Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-p-Synephrine [CAS No. 94-07-5] and (±)-p-Octopamine [CAS No. 104-14-3]

Review of Toxicological Literature

June 2004
Bitter Orange \((Citrus aurantium \text{ var. amara})\) Extracts and Constituents \((\pm)-p\)-Synephrine [CAS No. 94-07-5] and \((\pm)-p\)-Octopamine [CAS No. 104-14-3]

Review of Toxicological Literature

Prepared for
National Toxicology Program (NTP)
National Institute of Environmental Health Sciences (NIEHS)
National Institutes of Health
U.S Department of Health and Human Services
Contract No. N01-ES-35515

Project Officer:
Scott A. Masten, Ph.D.
NTP/NIEHS
Research Triangle Park, North Carolina

Prepared by
Integrated Laboratory Systems, Inc.
Research Triangle Park, North Carolina

June 2004
Abstract

Citrus aurantium (bitter orange, Seville orange, sour orange) and extracts of its dried fruit and peel have been used for years in traditional Western medicines, Chinese and Japanese herbal medicines, and as flavorings in foods and beverages. Bitter orange is regulated by the U.S. FDA; the peel, oil, extracts, and oleoresins are Generally Recognized as Safe as a direct additive to food. The peel is used in many pharmacopoeial preparations for flavoring and treatment of digestive problems. Oils from the fruit, peel, and other plant parts are also used for flavoring and fragrance and do not contain alkaloids. *p*-Octopamine and *p*-synephrine, the most frequently mentioned biogenic amines found in bitter orange extract, are agonists for both *α*- and *β*-adrenoceptors (octopamine has weak *β*-adrenergic activity). Octopamine is used as a cardiotonic and to treat hypotension. Synephrine is used as a vasoconstrictor in circulatory failure. Extracts used in many dietary supplements and herbal weight-loss formulas as an alternative to ephedra have concentrations of the sympathomimetic alkaloid synephrine that are often much higher than the synephrine concentrations reported for traditional extracts of the dried fruit or peel. Concentrations of octopamine in extracts are less than those reported for synephrine. Weight loss formulas usually contain 100-200 mg bitter orange extract, which provides 10-40 mg synephrine per dose. Health concerns about bitter orange and other compounds in dietary supplements led to the FDA's collection of product labels for the Center for Food Safety and Applied Nutrition to evaluate possible health risks. Concentrations of synephrine measured in several dietary products were generally lower than that declared on the label. Following intravenous administration of tritiated synephrine to patients, ~66 and 10% of the administered dose was recovered in the urine as deaminated *p*-hydroxymandelic acid and unchanged synephrine, respectively (2.5% of the dose was recovered as unchanged synephrine following ingestion). Trace amounts of *p*- and *m*-octopamine and *p*- and *m*-synephrine were found in plasma and platelets of healthy human subjects. Low concentrations of octopamine, thought to be a metabolic byproduct of catecholamine biosynthesis, are present in the central nervous system and peripheral tissues of vertebrates. Oral exposure of mice to extracts of *C. aurantium* peel suppressed cell viability of splenocytes and thymocytes. Oral exposure of rats to aqueous extracts of the immature fruit caused decreased food intake and body weight gain, ventricular arrhythmias, and inhibited Type I allergic reactions. Synephrine affected the sense organs and caused convulsions, dyspnea, cyanosis, and respiratory stimulation in other animal studies. Octopamine and synephrine were not mutagenic in *Aspergillus nidulans* diploid strains or L5178Y mouse lymphoma cells, respectively.
Executive Summary

Nomination
Bitter orange extract was nominated in 2002 for toxicological studies by a private individual based on its widespread and increasing use in "ephedra-free" dietary supplements and limited data to demonstrate its safety for this use. Bitter orange peel and its constituent synephrine are present in dietary supplements with and without ephedra (ma huang) for weight loss. Synephrine and other bitter orange biogenic amine constituents—octopamine, N-methyltyramine, tyramine, and hordeine—have adrenergic activity and may result in cardiovascular or other adverse effects similar to those induced by ephedra alkaloids.

Nontoxicological Data
Citrus aurantium var. [or subspecies] amara belongs to the order Geraniales and the family Rutaceae. It is a native to Southeast Asia and a wild crop in Venezuela. Bitter orange peel (also called bitter orange, sour orange, *Aurantii cortex*, *Aurantii Amari Cortex*, Bigarade orange, and Seville orange) consists of the fresh or dried outer portion of the pericarp of the ripe fruit of *C. aurantium*, var. Bigaradia, Hook. f. The main constituents of orange peel are the volatile oil and an amorphous, bitter glucoside called aurantiamarin. Other constituents include hesperidin, a colorless, tasteless, crystalline glucoside occurring mainly in the white zest of the peel, isohesperidin, hesperic acid, aurantiamaric acid, and a bitter acrid resin. In the peel of immature fruits, the chief constituents are naringin and hesperidin, while in the fruit flesh it is umbelliferone. *p*-Octopamine and *p*-synephrine, both adrenergic agonists, are the most frequently mentioned biogenic amines found in bitter orange peel and other *C. aurantium* preparations and other species such as *C. reticulata* Blanco (mandarin orange).

Chemical Analysis: The essential oils from bitter orange peel have been examined by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and gas chromatography (GC), alone or accompanied with flame ionization detector (GC-FID) or mass spectrometry (GC-MS). Methods for the quantitation of synephrine in the peel of citrus fruit (mature and immature) and decoctions of Chinese crude drugs include GC, TLC, and HPLC, alone or with various detectors. Using capillary electrophoresis (CE) with a chiral selector, synephrine enantiomers can be separated. Liquid chromatography-mass spectrometry (LC-MS) and LC-tandem MS methods allow the measurement of synephrine in dietary supplements.

Commercial Availability: *C. aurantium* var. amara is chiefly cultivated in southern Spain and Sicily. In the United States, they are grown as a crop in Arizona, where the peak of production is in January. Two companies in the United Kingdom supply bitter orange products. Additionally, there are numerous suppliers of multicomponent dietary supplements (especially for weight loss) containing bitter orange.

Uses: Bitter oranges are grown mainly for processing as preserves (especially, marmalade) and syrup due to their tart flavor. The essential oil is used to add fragrance to beverages and liqueurs (e.g., Curacao and Grand Marnier), sweet foods like candies and cakes, soaps, detergents, cosmetics, perfumes, and in sauces for meats and poultry. Orange peel is used in many pharmacopoeial preparations as a flavoring agent, stomachic, and carminative. Additionally, bitter orange is reported to be an expectorant, laxative, hypertensive, nerve, tonic, and diuretic. The extract has been added to many dietary supplements and herbal weight loss formulas (as an alternative to ephedra). Synephrine is the "active" ingredient of bitter orange and functions as a stimulant. It is also used as a vasoconstrictor in circulatory failure. Octopamine is used as a cardiotonic and to treat hypotension.

Human Exposure: Exposure to bitter orange peel and its constituents occurs primarily via ingestion of the fruit itself or its products (e.g., orange juice, marmalade, flavorings and fragments, and dietary supplements). Weight loss formulas usually contain 100-200 mg bitter orange extract, which provides
10-40 mg synephrine per dose. Extracts can contain up to 95% synephrine. Exposure can also result from peel oil used in aromatherapy and flavoring.

Regulations: Bitter orange is regulated by the Food and Drug Administration (FDA). Although *C. aurantium* is listed in its Poisonous Plants Database, *C. aurantium* orange oil extract, peel, flowers, and leaf are listed in its food additive database, an inventory often referred to as “Everything” Added to Food in the United States (EAFUS). Additionally, bitter orange peel, oil, oleoresins, and extracts are Generally Recognized as Safe (GRAS) as a direct additive to food. In frozen concentrated orange juice, the volume of bitter orange that may be added cannot exceed 5%.

The International Fragrance Association (IFRA) standard for bitter orange peel oil is 1.25% in products applied to areas of the skin that are exposed to the sun. The National Collegiate Athletic Association (NCAA) has included synephrine from *C. aurantium*, zhi shi, and bitter orange on its list of substances banned for student athletes.

Human Data

Many studies have been conducted regarding the effects of products whose ingredients include both ephedrine and bitter orange. Some report no adverse effects, while others report that the use of bitter orange with stimulants such as ephedra causes cardiotoxicity. When used in products for weight loss, which may be combined with ephedra, adverse effects included sensitivity to light, an increase in blood pressure, and heightened anxiousness. Similarly, studies of supplements containing synephrine plus caffeine are also controversial. The combination of synephrine and caffeine (in other herbs such as guarana and maté) has been reported to have the same potential in inducing cardiac arrhythmias, hypertension, heart attacks, and strokes as that of ephedra and caffeine.

In volunteers receiving skin applications of bitter orange peel oil expressed (5 µL/cm² of 100% oil) under occlusion followed by exposure to visible light or ultraviolet A, all subjects exhibited phototoxic reactions.

Toxicological Data

Chronic exposure, cytotoxicity, carcinogenicity, or tumor initiation/promotion studies were not available.

Chemical Disposition, Metabolism, and Toxicokinetics: Low concentrations of octopamine are present in the central nervous system and peripheral tissues of vertebrates; it is thought to be a metabolic byproduct of catecholamine biosynthesis. In rats, *m*- and *p*-octopamine are present in equal concentrations in the heart, spleen, and liver. Both are also present in the adrenals, vas deferens, brain, kidney, large intestine, bladder, and lungs, although the concentration of *m*-octopamine is 30 to 60% of the levels of *p*-octopamine in the these organs. The main urinary metabolites of the *o*-, *p*-, and *m*-octopamine (norfenefrine) are *o*-hydroxymandelic acid (OHMA), *p*-hydroxymandelic acid (PHMA), and *m*-hydroxymandelic acid (MHMA), respectively.

Following i.v. administration of tritiated synephrine to six patients, about 66% and 10% of the administered dose was recovered in the urine as deaminated PHMA and unchanged synephrine, respectively. Oral ingestion by ten patients followed a similar elimination pattern, except that only 2.5% of the dose was recovered as unchanged synephrine. The biological half-life was about two hours. Three healthy adult males given a plant free, controlled diet for three days provided urine samples containing no synephrine. After eating *Citrus unshiu* pulp, all three excreted the conjugated form of synephrine in the urine. The authors concluded that *l*-synephrine in fruit was converted to the conjugated form of synephrine, and that *l*-synephrine underwent chiral conversion to *d*-synephrine *in vivo*.

Trace amounts of *p*- and *m*-octopamine and *p*- and *m*-synephrine were found in plasma and platelets of healthy human subjects. There were no significant differences in the urinary concentrations of *p*- and *m*-
octopamine or p- and m-synephrine in a study comparing both hypertensive and normotensive human subjects. The metabolism of both amines to dopamine is mediated by human CYP2D6.

Acute Exposure: In male mice treated by gavage with essential oil from *C. aurantium* peel (0.5 or 1.0 g/kg), the latency period of tonic seizures was increased. In addition, treatment with the higher dose significantly increased hypnotic activity and anxiolytic activity. Sprague-Dawley rats orally administered a single dose of TJ-41 (up to 10 g/kg) or TJ-43 (2 or 8 mg/kg), herbal drug mixtures containing ~10% of *C. aurantium* peel, showed no toxic signs. Additionally, no deaths were reported.

Subcutaneous (s.c.) injection of p-synephrine (1500 mg/kg [8.971 mmol/kg]) caused effects on the sense organs, convulsions, and respiratory stimulation in mice. Administration of (R)-(−)-p-synephrine (700 mg/kg [4.19 mmol/kg]) and the S-enantiomer (1500 mg/kg [8.971 mmol/kg]) by s.c. injection also caused convulsions, as well as dyspnea and cyanosis in mice; oral administration of the compounds (1 mg/kg [6 µmol/kg] R and 0.3 mg/kg [2 µmol/kg] S) increased body temperature.

Short-term and Subchronic Exposure: No drug-related abnormalities in body or organ weights, food consumption, ophthalmology, urinalysis, hematological examination, blood biochemical examination, gross pathological examination, or microscopic examination were observed in Sprague-Dawley rats orally given TJ-41 (500 or 2500 mg/kg), an herbal drug mixture containing ~10% of *C. aurantium* peel, daily for 13 weeks. Similar results were seen with another herbal mixture containing ~10% peel, TJ-43 (125, 500, or 2000 mg/kg).

Daily oral administration (gavage) of *C. aurantium* fruit extracts standardized to 4 or 6% synephrine to male Sprague-Dawley rats for 15 days caused a significant dose-dependent decrease in food intake and body weight gain. Some deaths occurred in all treatment groups. No marked changes were seen in blood pressure; however, ventricular arrhythmias with enlargement of the QRS complex were observed.

In a study of p-synephrine stereoisomers, S-(+)-p-synephrine appeared to possess more antidepressant-like activity than R-(−)-p-synephrine.

Reproductive and Teratological Effects: In rats, daily intramuscular injection of synephrine (55 or 110 mg/kg [0.33 or 0.66 mmol/kg]) on days 7-16 of pregnancy decreased the number of uterine implants and viable fetuses, increased mean fetal weight and the number of micro fetuses, and retarded cranial and thoracic ossification. Additionally, renal and intestinal hemorrhage, brain hypoplasia, and unilateral microphthalmia were reported in some fetuses.

Genotoxicity: In *Aspergillus nidulans* diploid strains, octopamine (dose not provided [n.p.]) did not induce non-disjunction or crossing-over. In the L5178Y mouse lymphoma assay, synephrine (20-3600 µg/mL [120 µM-21.53 mM]) was inactive.

Immunotoxicity: Oral administration of extracts of the peel of the *C. aurantium* fruit, as well as of the immature fruit, led to decreased cell viability of splenocytes and thymocytes in BALB/c mice. Oral administration of aqueous extracts of the immature fruit also inhibited Type I allergic reactions in rats.

Other Data

Effects on Cell Growth

Compounds isolated from extracts of immature *C. aurantium* fruit inhibited cell growth in mouse leukemia L1210 and human erythroleukemia K562 cells *in vitro*, while methoxylated flavones isolated from extracts of the peel induced cell differentiation in mouse myeloid leukemia (M1) and human promyelocytic leukemia (HL-60) cells.
Neurological Effects
Neurological effects reported for synephrine and octopamine included increased locomotor activity, pre- and postsynaptic effects, anti-depressive activity, agonistic response toward trace amine receptors, inhibition of smooth muscle contraction, and depression of neurological function.

Effects on Enzymes
Sour orange juice inhibited microsomal CYP3A-mediated testosterone 6β-hydroxylation, whereas sweet orange juices did not. *C. aurantium* crude drugs showed the same effects. Octopamine, but not synephrine, inhibited cytochrome P450c11 *in vitro*. In a study of the inhibitory effects of citrus fruit extracts from 42 species and cultivars on rat platelet cyclooxygenase and lipoxygenase, the albedo extract of *C. aurantium* had the highest lipoxigenase inhibitory activity. Additionally, bitter orange juice extract had an inhibitory effect on intestinal P-glycoprotein-related efflux carriers *in vitro*.

Cardiovascular Effects
In humans, rats, guinea pigs, cats, and/or dogs, synephrine, octopamine, and extracts of *C. aurantium* have been evaluated for effects on the cardiovascular system that include changes in blood pressure, cardiovascular toxicity, contractility and excitability of the heart muscle, and/or adrenergic activity.

Effects on Blood and Hematopoietic System
Hypertensive rats administered synephrine via gavage for eight days had significantly reduced portal venous pressure, portal tributary blood flow, and cardiac index. When infused into hypertensive rats, synephrine dose-dependently reduced portal venous pressure and elevated mean arterial pressure.

Bitter orange peel (in Jupi, a Chinese herbal prescription) promoted human platelet aggregation.

Miscellaneous Studies
In white fat cells of the rat, hamster, and dog, synephrine partially stimulated lipolysis. Octopamine was fully lipolytic in garden dormouse, rat, hamster, and dog fat cells but was inefficient in guinea pig or human fat cells. Bitter orange peel stimulated lipolysis in mature 3T3-L1 cells.

Synephrine (dose n.p.), isolated from the leaves and juice of immature fruit, inhibited uterine contraction induced by serotonin in rats. D,L-Synephrine (10 µM [1.7 µg/mL]) stimulated aromatization of testosterone in Sertoli cell-enriched cultures from 19-day-old rats. Additionally, octopamine and synephrine (1 µM - 1 mM) enhanced progesterone production in bovine luteal cells *in vitro*; addition of norepinephrine and epinephrine significantly increased the effect.

Receptor Pharmacology of Biogenic Monoamines
Terminology in the NLM MeSH Database indicates that structural analogs of ephedrine, epinephrine, and norepinephrine are agonists for both α- and β-adrenoceptors, while synephrine and octopamine are α-adrenoceptor agonists and tyramine is an indirect sympathomimetic. However, some studies report that synephrine and octopamine were also agonists for β-adrenoceptors. Results from studies of both receptors are discussed.

In *in vitro* studies of the adrenergic activity of p-octopamine and p-synephrine compared to that of norepinephrine showed that p-octopamine and p-synephrine were generally orders of magnitude less active than norepinephrine on both the α- and β-adrenoceptors. p-Octopamine was more active than p-synephrine in some studies and less or equally active in other studies. m-Octopamine (norfenefrine) and m-synephrine (phenylephrine) were generally more potent than their para counterparts.
Structure-Activity Relationships
This section discusses the physiological effects, including toxicity, of certain structural analogs of synephrine and octopamine and briefly reviews studies that compare the cardiovascular effects of synephrine and/or octopamine with those of other biogenic amines. The, structural analogs include the catecholamines; several bronchodilators including ephedrine and terbutyline; nasal decongestants including phenylephrine, phenylpropanolamine, and pseudoephedrine; and appetite suppressants such as amphetamines.
Table of Contents

Abstract ... i
Executive Summary .. ii
1.0 Basis for Nomination .. 1
2.0 Introduction ... 1
 2.1 Chemical Identification and Analysis .. 2
 2.1.1 Chemical Identification ... 2
 2.1.2 Chemical Analysis .. 4
 2.2 Physical-Chemical Properties ... 5
 2.3 Commercial Availability .. 7
3.0 Production Processes .. 8
4.0 Production and Import Volumes ... 8
5.0 Uses ... 8
6.0 Environmental Occurrence and Persistence .. 9
7.0 Human Exposure ... 9
8.0 Regulatory Status .. 10
9.0 Toxicological Data ... 10
 9.1 General Toxicology ... 10
 9.1.1 Human Data ... 10
 9.1.2 Chemical Disposition, Metabolism, and Toxicokinetics 11
 9.1.3 Acute Exposure .. 14
 9.1.4 Short-term and Subchronic Exposure ... 15
 9.1.5 Chronic Exposure .. 16
 9.1.6 Synergistic/Antagonistic Effects ... 16
 9.1.7 Cytotoxicity ... 16
 9.2 Reproductive and Teratological Effects .. 16
 9.3 Carcinogenicity ... 16
 9.4 Initiation/Promotion Studies ... 16
 9.5 Anticarcinogenicity .. 16
 9.6 Genotoxicity .. 16
 9.7 Cogenotoxicity ... 16
 9.8 Antigenotoxicity .. 16
 9.9 Immunotoxicity .. 17
 9.10 Other Data ... 17
 9.11 Receptor Pharmacology of Octopamine, Synephrine, and Other Biogenic
 Monoamines ... 18
10.0 Structure-Activity Relationships .. 22
11.0 Online Databases and Secondary References ... 29
 11.1 Online Databases ... 29
 11.2 Secondary References ... 30
12.0 References ... 30
13.0 References Considered But Not Cited ... 49
Acknowledgements ... 50
Appendix A: Units and Abbreviations .. 51
Appendix B: Chemicals Found in *Citrus Aurantium* (from the Phytochemical and Ethnobotanical Database) ... 53
Appendix C: Summary of Physiological Responses to Adrenoceptor Stimulation 56
Appendix D: Definitions from the MeSH Database .. 58
Appendix E: Description of Search Strategy and Results ... 64

Tables:
Table 1. Concentrations of Constituents in Fruit, Peel, Oil, and Extracts 6
Table 2. Acute Toxicity Values for Octopamine, Synephrine, and Its Hydrochloride 14
Table 3. Phenylethylamine and Phenylpropanolamine Structural Analogs of Synephrine and Octopamine .. 23
Table 4. Structure-Activity Relationships Among Adrenergic Receptor Agonists 25
1.0 Basis for Nomination
Bitter orange extract was nominated in 2002 for toxicological studies by a private individual based on its widespread and increasing use in "ephedra-free" dietary supplements and limited data to demonstrate its safety for this use. Bitter orange peel and its constituent synephrine are present in dietary supplements with and without ephedra (ma huang) for weight loss. Synephrine and other bitter orange biogenic amine constituents—octopamine, N-methyltyramine, tyramine, and hordenine—have adrenergic activity and may result in cardiovascular or other adverse effects similar to those induced by ephedra alkaloids.

2.0 Introduction
Citrus aurantium var. [or subspecies] amara belongs to the order Geraniales and the family Rutaceae. It is a native to Southeast Asia and a wild crop in Venezuela (Quintero et al., 2003). The Latin name for the peel of the citrus fruit is Aurantii Nobilis Pericarpium, and that for the immature fruit is Aurantii Fructus Immaturus (Takei et al., 1999). The pharmacopoeial name for bitter orange peel is Aurantii pericarpium, and the fruit is called zhi shi in traditional Chinese medicine (Am. Botanical Council, 2000; Supplement Watch, undated). Constituents of C. aurantium include flavonone glycosides and flavone aglycones, coumarins, psoralens, polymethoxyflavones, waxes, aldehydes, amines, and monoterpenes (ARS USDA, 1999; Boelens and Jimenez, 1989; Chouchi et al., 1996). Many studies have reported results from the determination of bitter orange peel constituents, often noting differences in oil composition from unripe and ripe fruit (e.g., Boelens and Jimenez, 1989). The cold-pressed oil from the cortex contains mainly monoterpenes (chiefly limonene [77.9%]), sesquiterpenes, aldehydes, alcohols, and one ketone (nootkatone) (Quintero et al., 2003). The psoralens found in Citrus species include bergapten and epoxybergamottin (Dugo et al., 1996).

This report presents data on bitter orange peel, its essential oil, and its constituents, p-octopamine and p-synephrine, the most frequently noted biogenic amines found in the peel. Unless otherwise stated, "octopamine" and "synephrine" will be used to designate the para isomers; in most cases, when authors did not specify the form, the para form was meant.

Source: http://www.rain-tree.com/orange.htm
2.1 Chemical Identification and Analysis

2.1.1 Chemical Identification

Bitter Orange Peel

Bitter orange peel (also called bitter orange, sour orange, *Aurantii cortex*, *Aurantii Amari Cortex*, Bigarade orange, and Seville orange) consists of the fresh or dried outer portion of the pericarp of the ripe fruit of *Citrus aurantium*, var. Bigaradia, Hook. f. In traditional Chinese medicine, zhi qiao is prepared from the dried peel of immature green fruit, and zhi shi is prepared from dried fruit. Bitter orange peel is distinguished from the sweet orange by its deeper orange-red color, rough rind, bitter peel, sour pulp, and more broadly winged leaf stalk. The main constituents of the orange peel are the volatile oil and an amorphous, bitter glucoside called aurantiamarin. Other constituents include hesperidin (C_{44}H_{28}O_{14}), a colorless, tasteless, crystalline glucoside occurring mainly in the white zest of the peel, isohesperidin (C_{44}H_{26}O_{24}·5H_{2}O), hesperic acid, aurantiamaric acid, and a bitter acid resin (Am. Botanical Council, 2000; Br. Pharm. Codex, 1911; Budavari, 1996; Felter and Lloyd, 1898). In the peel of immature fruits, the chief constituents are naringin and hesperidin, while in the fruit flesh it is umbelliferone (Wu and Sheu, 1992).

The CAS Registry Number for bitter orange peel oil is 68916-04-1 and for bitter orange peel extract is 977081-87-0.

p-Octopamine and *p*-Synephrine

p-Octopamine and *p*-synephrine, both adrenergic agonists, are the most frequently mentioned biogenic amines found in bitter orange peel and other *C. aurantium* preparations and *Citrus* species such as *C. reticulata* Blanco (mandarin orange). Most of the literature is indexed with the CAS RNs of the racemic mixtures of these agents; however, the enantiomers have also been reported. Octopamine is the phenol analog of norepinephrine (noradrenaline). Tyramine, *N*-methyltyramine, and, less often, hordenine are often determined. The widely occurring stachydrine—unlike the other amines in bitter orange, which are 4-hydroxyphenylethanalamine derivatives—is a 2-carbonyl-1,1-dimethylpyrrolinium inner salt (Am. Botanical Council, 2000; Budavari, 1996).

Octopamine ([C_{8}H_{11}NO_{2}]; mol. wt. = 153.18) is also called:

1-(*p*-Hydroxyphenyl)-2-aminoethanol
4-Hydroxyphenethanolamine
4-(2-Amino-1-hydroxyethyl)phenol
α-(Aminoethyl)-*p*-hydroxybenzyl alcohol
α-((Aminomethyl)-4-hydroxybenzenemethanol
α-(Aminomethyl)-p-hydroxybenzyl alcohol
Analet
Benzenemethanol, α-(aminomethyl)-4-hydroxy- (9CI)
Benzyl alcohol, α-(aminomethyl)-p-hydroxy- (6CI, 8CI)
β-Hydroxy-β-(4-hydroxyphenyl)ethylamine
p-Hydroxyphenylethanolamine
ND50
Norden
Norfen
Norphen
Norsympathol
Norsympatol
p-Norsynerpin
Norsynerpine
Norton
Octapamine
(±)-Octopamine
DL-Octopamine
p-Octopamine
p-Oxyphenyl aminooethanol
(RS)-Octopamine
Win 5512
WV-569 (drug code)

Sources: Budavari (1996); ChemIDplus (undated-a); Registry (2003a)

Syneprine ([C₉H₁₅NO₂]; mol. wt. = 167.21) is also called:

1-Hydroxy-4-[(1-hydroxy-2-methylamino)ethyl]benzene
1-(4-Hydroxyphenyl)-2-methylaminoethanol
1-(4-Hydroxyphenyl)-N-methylethanolamine
4-Hydroxy-α-[(methylamino)methyl]benzenemethanol
4-[1-Hydroxy-2-(methylamino)ethyl]phenol
dl-1-(4-Hydroxyphenyl)-2-methylaminoethanol
RS-1-(4-Hydroxy-2-(methylamino)ethanol
Analetin
Benzenemethanol, 4-hydroxy-α-[(methylamino)methyl]- (9CI)
Benzyl alcohol, p-hydroxy-α-[(methylamino)methyl]- (8CI)
Ethaphene
p-Hydroxy-α-[(methylamino)methyl]benzyl alcohol
p-Hydroxyphenylmethylaminoethanol
p-Methylaminoethanolphenol
(±)-N-Methyloctopamine
β-Methylamino-α-(4-hydroxyphenol)ethyl alcohol
Methylaminomethyl 4-hydroxyphenyl carbinol
NSC 166285
NSC 170956
Oxedrine
p-Oxodrine
α-(4-Oxyphenyl)-α-oxy-β-methylaminoethan (German)
Parakorper (German)
Parasympatol
Pentedrin (German)
(±)-S38537-9
Simpalon
Simpatol
Sympaethamine
Sympathol
Synefrin (Czech)
Synephrin
(±)-Synephrine
DL-Synephrine
p-Synephrine
Synthenate

Sources: Budavari (1996); ChemIDplus (undated-b); Registry (2003b)

2.1.2 Chemical Analysis

The essential oils from bitter orange peel have been examined by thin-layer chromatography (TLC) and by gas chromatography (GC), alone or accompanied with flame ionization detector (GC-FID) or mass spectrometry (GC-MS) (Quintero et al., 2003; Salib et al., 1978; Tuzcu et al., 1985; Veriotti and Sacks, 2002). The composition of the oxygen heterocyclic fraction of bitter orange essential oil has been obtained by high-performance liquid chromatography (HPLC) (Dugo et al., 1996; Fisher and Trama, 1979).

Methods for the quantitation of synephrine in the peel of citrus fruit (mature and immature) and decoctions of Chinese crude drugs include GC, TLC, and HPLC (Takei et al., 1999; Hashimoto et al., 1992), alone or with various detectors (e.g., HPLC with electrospray MS detection [He et al., 1997]). Additionally, its presence in crude drugs and dried fruit and fruitpeel was determined by ion-pair HPLC [sodium dodecyl sulfate as the ion-pair reagent] (Ohta et al., 1994; Zheng et al., 1983). Hesperidin and synephrine can be quantitated in the dried rind of the ripe fruit of mandarin oranges (C. reticulata Blanco; Chinese traditional herbal drug, Pericarpium Citri Reticulatae) using capillary electrophoresis with electrochemical detection (CE-ED). The detection limits were 6.54x10^{-7} and 4.96x10^{-7} M, respectively (Chen et al., 2002). Using CE with a chiral selector, synephrine enantiomers can be separated (De Boer et al., 1999). Volatile compounds and methyl esters in bitter orange have been identified using GC; limonene was the main compound in the monoterpenes, and the mean concentration of fatty acids was 678 mg/L (Moufida and Marzouk, 2003). The content of the adrenergic amines dl-octopamine, dl-synephrine, and tyramine in fruits, extracts, and herbal products of C. aurantium L. var. amara were determined using HPLC with UV detection; the direct separation of synephrine enantiomers was done with HPLC on a β-cyclodextrin stationary phase (Pellati et al., 2002; Kusu et al., 1996).

FDA scientists have developed liquid chromatography-mass spectrometry (LC-MS) and LC-tandem MS methods for the measurement of synephrine in dietary supplements (Niemann and Gay, 2003). Octopamine and synephrine levels have been determined in urine by gas chromatography-negative ion chemical ionization mass spectrometry (GC-NICIMS) (Watson et
al., 1990). HPLC with electrochemical detection has also been used to assess synephrine and octopamine concentrations in human plasma and platelets (D'Andrea et al., 2003a).

2.2 Physical-Chemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Information</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical State</td>
<td>pale yellow liquid</td>
<td>Budavari (1996)</td>
</tr>
<tr>
<td>Density (d<sub>25</sub>)</td>
<td>0.842-0.848</td>
<td></td>
</tr>
<tr>
<td>Water Solubility</td>
<td>very slightly</td>
<td></td>
</tr>
<tr>
<td>Soluble in:</td>
<td>alcohol (absolute or 4:1 with glacial acetic acid)</td>
<td></td>
</tr>
<tr>
<td>p-Octopamine [104-14-3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiling Point (°C)</td>
<td>360.7±27.0 @ 760.0 Torr</td>
<td>Registry (2003a)*</td>
</tr>
<tr>
<td>Flash Point (°C)</td>
<td>172.0±42.7</td>
<td></td>
</tr>
<tr>
<td>Vapor Pressure (Torr)</td>
<td>7.82x10<sup>-6</sup> @ 25 °C</td>
<td></td>
</tr>
<tr>
<td>K<sub>OC</sub></td>
<td>1 @ pH 1, 4, 7; 2.86 @ pH 8; 5.00 @ pH 10</td>
<td></td>
</tr>
<tr>
<td>logP</td>
<td>-0.276±0.259</td>
<td></td>
</tr>
<tr>
<td>Molar Solubility</td>
<td>≥ 1 M @ pH 1, 4, 7, 8, 10</td>
<td></td>
</tr>
<tr>
<td>D(-)-Octopamine [876-04-0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical State</td>
<td>crystals from hot water</td>
<td>Budavari (1996)</td>
</tr>
<tr>
<td>Melting Point (°C)</td>
<td>>250 (decomposes) for a compound formed at ~160 °C</td>
<td></td>
</tr>
<tr>
<td>DL-Octopamine hydrochloride [770-05-8]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical State</td>
<td>crystals</td>
<td>Budavari (1996)</td>
</tr>
<tr>
<td>Decompositin Point (°C)</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Soluble in:</td>
<td>water</td>
<td></td>
</tr>
<tr>
<td>p-Synephrine [94-07-5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical State</td>
<td>crystals</td>
<td>Budavari (1996)</td>
</tr>
<tr>
<td>Melting Point (°C)</td>
<td>184-185</td>
<td></td>
</tr>
<tr>
<td>Boiling Point (°C)</td>
<td>341.1±27.0 @ 760 Torr</td>
<td>Registry (2003b)*</td>
</tr>
<tr>
<td>Flash Point (°C)</td>
<td>163.4±25.7</td>
<td></td>
</tr>
<tr>
<td>Vapor Pressure (Torr)</td>
<td>3.18x10<sup>-5</sup> @ 25 °C</td>
<td></td>
</tr>
<tr>
<td>K<sub>OC</sub></td>
<td>1 @ pH 1, 4, 7, 8; 6.04 @ pH 10</td>
<td></td>
</tr>
<tr>
<td>logP</td>
<td>-0.030±0.269</td>
<td></td>
</tr>
<tr>
<td>Molar Solubility</td>
<td>≥ 1 M @ pH 1, 4, 7, 8, 10</td>
<td></td>
</tr>
<tr>
<td>p-Synephrine hydrochloride [5985-28-4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical State</td>
<td>crystals</td>
<td>Budavari (1996)</td>
</tr>
<tr>
<td>Melting Point (°C)</td>
<td>151-152</td>
<td></td>
</tr>
<tr>
<td>Soluble in:</td>
<td>water</td>
<td></td>
</tr>
<tr>
<td>p-Synephrine tartrate [16389-24-5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical State</td>
<td>crystals</td>
<td>Budavari (1996)</td>
</tr>
<tr>
<td>Melting Point (°C)</td>
<td>188-190 (some decomposition)</td>
<td></td>
</tr>
<tr>
<td>Soluble in:</td>
<td>alcohol and water</td>
<td></td>
</tr>
</tbody>
</table>

Note: Calculated properties for the other chemicals are available from Registry.

Synephrine is stable to air and light (Budavari, 1996). It is chemically similar to ephedrine and pseudoephedrine (Supplement Watch, undated).

Although the available literature indicates that the synephrine content of the bitter orange originates in the peel, publications regarding peel extraction and analytical techniques that
describe synephrine concentrations were not found. Information about peel constituents was limited to flavonoid content, for example peels extracted for hesperidin/hesperetin (Nguyen and Lee, 1987; Nakabayashi, 1960 [Japanese patent]). Concentrations of synephrine and other constituents, in extracts of bitter orange fruit, peel, and/or oil are given Table 1. The concentration of synephrine in the dried fruit extracts are more than ten fold higher than that reported for the fresh fruit extracts. Additional constituents found in C. aurantium are listed in Appendix B.

Nieman and Gay [FDA] (2003) determined ephedrine alkaloids in 48 trade-named dietary supplements containing ephedra and/or (+/-)-synephrine. The analytical concentration of (+/-)-synephrine generally differed from that declared on the label. Energy Fuel (ephedra-free) contained 13.4% (+/-)-synephrine and the label declared 19.5%. In two other products, (+/-)-synephrine concentrations of 20% and 25% were declared, yet none were found. The product with the highest (+/-)-synephrine concentration, 16.9%, had a declared concentration of 16%. In ten other synephrine-containing products, (+/-)-synephrine concentrations ranged from 2.02 to 6.75% compared to declared concentrations of 3.0 to 5.2%. Clembutrx contained 12.7% (+/-)-synephrine, but a declared concentration could not be found.

Table 1. Concentrations of Constituents in Fruit, Peel, Oil, and Extracts

<table>
<thead>
<tr>
<th>Sample Matrix</th>
<th>Extraction Method</th>
<th>Analytical Method</th>
<th>Synephrine Concentration</th>
<th>Other Constituents</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fresh fruit pulp</td>
<td>water</td>
<td>RP-HPLC/UV detector</td>
<td>0.020 % (92.389 % l-enantiomer)</td>
<td>Octopamine < 0.9 ng/µl<sup>a</sup> Tyramine < 1.2 ng/µl<sup>a</sup></td>
<td>Pellati et al. (2002)</td>
</tr>
<tr>
<td>fresh fruit pulp</td>
<td>water</td>
<td>HPLC-DAD on β-cyclodextrin stationary phase</td>
<td>(d/-): 0.027 % (l/-): 0.025 % (d/-): 0.002 %</td>
<td>NG</td>
<td>Pellati et al. (2002)</td>
</tr>
<tr>
<td>Seville (sour) orange juice</td>
<td>freshly squeezed</td>
<td>HPLC/UV detector; direct injection</td>
<td>56.9 +/- 0.52 µg/mL</td>
<td>Octopamine not detected</td>
<td>Penzak et al. (2001)</td>
</tr>
<tr>
<td>pulverized dried fruits</td>
<td>water</td>
<td>RP-HPLC/UV detector</td>
<td>0.352 %</td>
<td>Octopamine < 0.9 ng/µl<sup>a</sup> Tyramine < 1.2 ng/µl<sup>a</sup></td>
<td>Pellati et al. (2002)</td>
</tr>
<tr>
<td>pulverized dried fruits</td>
<td>water</td>
<td>HPLC-DAD on β-cyclodextrin stationary phase</td>
<td>(d/-): 0.380 % (l/-): 0.380 % (d/-): < 2.3 ng/µl<sup>a</sup></td>
<td>NG</td>
<td>Pellati et al. (2002)</td>
</tr>
<tr>
<td>powdered peel and fruit</td>
<td>methanol</td>
<td>TLC/UV absorbance</td>
<td>0.12-1.98 % (aggregate range for 11 samples of fruit & peel)</td>
<td>NG</td>
<td>Chen and Hou (1984)</td>
</tr>
<tr>
<td>dried immature fruits</td>
<td>1.2 g. powd. fruit; 80% ethanol at 90 °C for 2 hr</td>
<td>HPLC/UV detector/ES/MS for flavonoids</td>
<td>detected but not quantitated in a 120 mg residue</td>
<td>Flavonoids</td>
<td>He et al. (1997)</td>
</tr>
<tr>
<td>pulverized dried extracts from local Italian markets (unspecified matrix)</td>
<td>water</td>
<td>RP-HPLC/UV detector</td>
<td>3.003-3.079 % (100% l-enantiomer)</td>
<td>Octopamine 0.023-0.028 % Tyramine 0.055-0.056 %</td>
<td>Pellati et al. (2002)</td>
</tr>
<tr>
<td>pulverized dried extracts from local Italian markets (unspecified matrix)</td>
<td>water</td>
<td>HPLC β-cyclodextrin stationary phase</td>
<td>(d/-): 2.847-2.996 % (l/-): 2.847-2.996 % (d/-): < 2.3 ng/µl<sup>a</sup></td>
<td>NG</td>
<td>Pellati et al. (2002)</td>
</tr>
</tbody>
</table>
Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3]

Table 1. Concentrations of Constituents in Fruit, Peel, Oil, and Extracts (Continued)

<table>
<thead>
<tr>
<th>Sample Matrix</th>
<th>Extraction Method</th>
<th>Analytical Method</th>
<th>Synephrine Concentration</th>
<th>Other Constituents</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>immature fruit peel extract (see text)</td>
<td>water/ethanol</td>
<td>HPLC</td>
<td>6.0-10%</td>
<td>NG</td>
<td>Renaissance Herbs (2003)</td>
</tr>
<tr>
<td>oil from fresh Tunisian bitter orange juice</td>
<td>fruits cold pressed 1:1 diethyl ether-pentane extraction of juice</td>
<td>GC/FID detector</td>
<td>NG</td>
<td>α-Pinene 1.498 % Limonene 90.335 % Linalool 1.461 % α-Terpineol 1.068 % 3-Heptanone 1.2467 % other constituents <1%</td>
<td>Moufida and Marzouk (2003)</td>
</tr>
<tr>
<td>peel oil</td>
<td>steam distillation</td>
<td>GC/TOF MS</td>
<td>NG</td>
<td>Myrcene 2.05% Limonene 3.42% p-Cymene 7.24% Linalool 0.10 %</td>
<td>Veriotti and Sacks (2002)</td>
</tr>
<tr>
<td>peel oils from on-tree fruits</td>
<td>NG</td>
<td>NG</td>
<td>NG</td>
<td>Limonene 92-95% Linalol & linalyl acetate 0.3-3.2%</td>
<td>Boelens and Jimenez (1989)</td>
</tr>
</tbody>
</table>

* Level of detection. Abbreviations: DAD = diode array detector; FID = flame ionization detection; GC = gas chromatography; HPLC = high performance liquid chromatography; MS = mass spectrometry; NG = not given; RP = reverse phase; TLC = thin layer chromatography; TOF = time of flight; UV = ultraviolet.

2.3 Commercial Availability

C. aurantium var. amara is chiefly cultivated in southern Spain Seville oranges) and Sicily (Palermo). In the United States, they are grown as a crop in Arizona (Br. Pharm. Codex, 1911; Luckett, 2003). The oil from C. aurantium flowers is imported from the West Indies and sold in amounts from 0.5 to 32 oz. by CedarVale Natural Health Inc. (Cedar Vale, KS) (CedarVale Nat. Health, 2003). Two companies in the United Kingdom supply bitter orange products: bitter orange essential oil is sold as 2.5-mL up to 1-L volumes from Alexander Essentials, and bitter orange peel tincture is available from Artemis Herbs Limited in 50- and 100-mL quantities (Alexander Essentials, 2003; Artemis Herbs Ltd., 2003).

A bulk supplier of powdered C. aurantium "peel" extract sells their product as Zhi Shi with 6% or 10% synephrine in 25-kg quantities. Zhi shi is the immature bitter orange fruit, and is likely the actual starting material for these products. (The details for this extract were similar to the descriptions of immature fruit extracts sold in bulk.) Despite the numerous dietary supplements advertised on the Internet as containing "bitter orange peel extract," the additive used is more likely the dried alcohol-water extracts of the immature fruit that is sold as a powder in bulk quantities. Other bulk suppliers of C. aurantium powder extract include Hainan Zhongxin Chemical Co., Ltd. (100 kg [220 lb]), Shanghai Herbsa Nutraceutical Inc., and Zhejiang Sinour Industry Co., Ltd., and (Shanghai Herbsa Nutraceutical Inc., 2004; Zhejiang Sinour Industry Co., 2003; ZXCHEM, 2002). In the United States, FCC Products, Inc. (Livingston, NJ) sells the extract with 10% synephrine (FCC Products, Inc., undated). A bulk supplier of C. aurantium peel tincture (alcohol-water; maximum quantity sold is five gallons) was also found but there was no mention of synephrine or other constituents in the material safety data sheet (Liberty Natural Products, 2004).

Numerous suppliers of multicomponent dietary supplements for weight loss and other purposes exist, with many of the products containing bitter orange. Examples include the following:

- Bitter Orange Extract [standardized to 6% synephrine],
• Xenadrine®-EFX™ [bitter orange standardized for synephrine, N-methyltyramine, hordenine, octopamine, and tyramine],
• Ultra Diet Phen Calm Mood [bitter orange peel standardized extract 570 mg, yielding 24 mg synephrine],
• Lipotrim [27 mg bitter orange peel]
• Dexatrim Natural [12 mg bitter orange peel powdered extract per caplet], and
• MRM Meta-Burn™ XTP [300 mg octopamine hydrochloride (bitter orange and synephrine not listed)]

Sources: Nature's Way (2003); Cytodyne Technologies (2003); HerbsMD (2002); Integra Nutrition Inc. (undated); SlimStore.com (undated); and 1fast400.com (2004), respectively.

(±)-Synephrine is available from Boehringer Ingelheim Pharma GmbH and Company (Germany) in 25-kg fiber drums (Boehringer Ingelheim, 2003). Synephrine extract, with 4% to 95% content, is supplied by Northwest Botanicals, Inc. (Grants Pass, OR) in 5-kg/bag or 25-kg/drum (Northwest Botanicals, Inc., 2003). Authentic synephrine for experimental use is available from Sigma (St. Louis, MO) (Huang et al., 1995; Takei et al., 1999).

3.0 Production Processes
For pharmaceutical preparation, the recommended formula for bitter orange peel fluid extract or tincture consists of a menstruum composed of two parts alcohol and one part water (Hughes, 1926; Martin et al., 1961; Robbins, 1883).

p-Synephrine is prepared synthetically by the hydrogenation of ω-methylamino-4-hydroxyacetophenone in water in the presence of platinum or palladium. p-Octopamine is biosynthesized by β-hydroxylation of tyramine by the enzyme dopamine β-hydroxylase (Budavari, 1996).

4.0 Production and Import Volumes
No data were available.

5.0 Uses
Bitter Orange Peel and Its Oil
Bitter oranges are grown mainly for processing as preserves (especially, marmalade) and syrup due to their tart flavor. Their flesh is also used in baking. The essential oil extracted from the cortex of C. aurantium amara is used to add fragrance to beverages and liqueurs, sweet foods like candies and cakes, soaps, detergents, cosmetics, and perfumes. Specifically, oil of Seville (from the leaves and zest) is used as a flavoring agent in Curacao, Grand Marnier, Cointreau, and orange flower water, as well as in sauces for meats and poultry (Am. Botanical Council, 2000; Lin et al., 1986; Luckett, 2003; Quintero et al., 2003; Victoria Packing Corp., 2001).

Orange peel is used in many pharmacopeial preparations as a flavoring agent, stomachic, and carminative (Br. Pharm. Codex, 1911). Bitter orange is also an expectorant, laxative, hypertensive, nervine, tonic, and diuretic. In the United States, its purported uses include prevention of cancer of the skin, breast, colon, etc. [Worldwide uses are presented—e.g., use as an antiseptic and purgative in Haiti or as a narcotic, sedative, and treatment for scurvy in Turkey] (Flora Manufacturing and Distributing Ltd., undated; Raintree Nutrition, Inc., 2002). Oil of
bitter orange is used as a remedy for treatment-resistant fungal skin diseases. Bitter orange tincture or extract is primarily used for heartburn (Am. Botanical Council, 2000).

Powdered extracts (water/alcohol) of dried immature fruit and/or peel have been added to many dietary supplements and herbal weight loss formulas (as an alternative to ephedra) (Am. Botanical Council, 2000). Synephrine is the "active" ingredient of bitter orange and functions as a stimulant (Brooks et al., 2003). Consequently, products containing synephrine or octopamine (or other alkaloids, such as \(N \)-methyltyramine) obtained from bitter orange peel (as well as the leaves and immature, ripe fruit) have been manufactured to produce and/or maintain weight loss, improve physical fitness, and increase lean muscle mass (Jones 2002a,b). Patented methods and "thermogenic" compositions for weight loss also contain bitter orange, synephrine, ephedrine, or other norepinephrine-stimulating compounds (Kuhrts, 2002). However, the claims that synephrine is a safe and effective weight-loss substitute for ephedra have not been proven (Brooks et al., 2003). Additionally, one paper reports that the peel oil extracts of bitter orange may contain potential insecticides (Mwaiko, 1992).

Octopamine
Octopamine is used in Chinese medicine as a cardiotonic and to treat hypotension. The natural \(D(-) \) form is more potent than the \(L(+) \) form in producing cardiovascular adrenergic responses. In some invertebrates, it can also serve as a neurotransmitter (ChemIDplus, undated-a).

Synephrine
Pharmacologically, synephrine is similar to ephedrine but does not have its central nervous system (CNS) effects (NDPSC, 2003). It is therefore being considered as an alternate for ephedrine in dietary supplements (Am. Botanical Council, 2000). Synephrine and \(N \)-methyltyrosamine (chemicals found in immature \(C. \) aurantium fruit) have been shown to be effective antishock (i.e., primarily cardiotonic and vasoconstrictive) agents. In one study, 48 of 50 children with infective shock were cured when treated with synthetic synephrine and \(N \)-methyltyrosamine (1.66 to 24 mg/kg) (Zhao et al., 1989).

6.0 Environmental Occurrence and Persistence
In addition to their presence in bitter orange, octopamine and synephrine have been found in higher plants such as Amaryllidaceae and Cyperaceae (Wheaton and Stewart, 1970). Synephrine also occurs in the flower of \(C. \) aurantium (Huang et al., 2001a).

7.0 Human Exposure
Exposure to bitter orange peel and its constituents occurs primarily via ingestion of the fruit itself or its products (e.g., orange juice, marmalade, and dietary supplements). Bitter orange peel is added to various foods (beer and other beverages, cakes, etc. [see Section 5.0]). The Florida Department of Citrus regularly monitors the concentrations of synephrine and its precursor tyrosine among several other compounds in citrus juices (Cancalon, 1999). The daily dosage for bitter orange peel is 4-6 g (dry peel) in drugs, 2-3 g in tincture, and 1-2 g in extract. Weight loss formulas usually contain 100-200 mg bitter orange extract, which provides 10-40 mg synephrine per dose (Am. Botanical Council, 2000; Smartinfo, undated; Ther. Res. Faculty, 2003).
8.0 Regulatory Status

Bitter orange is regulated by the U.S. Food and Drug Administration (USFDA). *C. aurantium* is listed in its Poisonous Plants Database, however, *C. aurantium* orange oil extract, peel, flowers, and leaf are listed in its food additive database, an inventory often referred to as "Everything" Added to Food in the United States (EAFUS) (FDA CFSAN, 1996, 2003). Additionally, bitter orange peel is Generally Recognized as Safe (GRAS) as a direct additive to food (21 CFR 182.20 and 21 CFR 582.20). The oils, extracts, and oleoresins of bergamot, bitter orange flowers and peel, and petitgrain (all of *C. aurantium* L.) are also designated as GRAS (21 CFR 172, 182, 184, and 186) (ars-grin.gov, undated). In frozen concentrated orange juice, the volume of bitter orange that may be added cannot exceed 5% (21 CFR 146.146). Table syrup may contain ground orange peel (no specific species) as an ingredient (21 CFR 168.180). FDA's guidance for the preparation of orange marmalade, suggesting that bitter orange marmalade be prepared by mixing at least 25 lb of fruit (peel and juice) to each 75 lb of sweetening ingredient, is in agreement with the standards first issued by the U.S. Department of Agriculture in 1974 (FDA CFSAN, 1997; USDA, 1974).

Concerns about bitter orange and other compounds in dietary supplements led to the FDA's collection of product labels for the Center for Food Safety and Applied Nutrition (CFSAN) to determine the conditions of product use and the levels of product ingredients in order to evaluate possible health risks. Products shipped in bulk not for use in manufacturing other dietary supplements in accordance with section 101.36(h)(3) are exempt from nutrition labeling (i.e., "Supplement Facts") (FDA CFSAN, 2000). Zhishin, LLC (South Burlington, VT), who manufactures three of the four name brand dietary supplements they package, ZHI-Slim™, ZHI-Thermo™, ZHIshape™, and DynamicTrim™, submitted "Notification of a Structure/Function Statement" to the FDA/CFSAN, noting that bitter orange contains small amounts of synephrine and octopamine (Jones, 2001). In 2004, the FDA Commissioner stated that the agency will investigate other herbal diet supplements, including bitter orange, that have replaced the now banned ephedra as substitutes (Healthfinder, 2004a,b; schumer.senate.gov, undated).

The International Fragrance Association (IFRA) standard for bitter orange peel oil is 1.25% in products applied to areas of the skin that are exposed to the sun (IFRA, 2002). The National Collegiate Athletic Association (NCAA) has included synephrine from *C. aurantium*, zhi shi, and bitter orange on its list of substances banned for student athletes (NCAA, undated).

9.0 Toxicological Data

9.1 General Toxicology

9.1.1 Human Data

In one study, a 28-year-old man abusing synephrine tablets (dose not provided [n.p.]) suffered a massive myocardial infarction (Keogh and Baron, 1985; NDPSC, 2003). In another study, an overdose of synthetic synephrine and *N*-methylyramine in children caused side effects that included a rapid increase in blood pressure, nausea, vomiting, irritation, and tachycardia; the symptoms, however, were short-lived (Zhao et al., 1989).

With the increasing use of dietary supplements by the general population, many studies have been conducted regarding the effects of these products, especially those formulas whose ingredients include both ephedrine and bitter orange. Some report no adverse effects (e.g., Kalman et al., 2002), while others report that the use of bitter orange with stimulants such as
Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts 06/2004 and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3]

ephedra causes cardiotoxicity (Keogh and Baron, 1985 [cited by Moore, 2003 lett.]; Penzak et al., 2001). When used in products for weight loss, which may include ephedra, identified adverse effects were sensitivity to light and an increase in blood pressure (Heinrich, 2002). The product Xenadrine RFA-1 (containing 85 mg bitter orange [standardized for 5 mg (30 µmol) synephrine] and ephedrine) produced heightened anxiousness, elevated heart rate, and a feeling of "warmed blood" in obese adults. The supplement caused reductions in fat mass, percent fat, and body mass but had little effect on energy expenditure, changes in appetite, or blood chemistries (Armstrong et al., 2001). Xenadrine was also implicated in a 26-year-old woman suffering from ischemic colitis (Ryan et al., 2002). A 55-year-old woman (noted smoker) who ingested the multicomponent dietary supplement Edita's Skinny Pill (containing 300 mg bitter orange) for weight loss over a one-year period, was diagnosed with acute lateral-wall myocardial infarction. Based on the analysis, C. aurantium was possibly associated with the cardiovascular event (Nykamp et al., 2004).

Similar to the study results of supplements containing both bitter orange and ephedra, those for supplements containing synephrine plus caffeine are controversial. The combination of synephrine and caffeine (in other herbs such as guarana and maté) has been reported to have the same potential in inducing cardiac arrhythmias, hypertension, heart attacks, and strokes as that of ephedra and caffeine (Marcus and Grollman, 2003 lett.). In one study, however, when C. aurantium extract (975 mg; synephrine content not reported), caffeine, and St. John's Wort was given to obese adults, significant reductions in body weight and body fat occurred with no changes in blood pressure, heart rate, electrocardiographic findings, serum chemistries, or urinalysis findings [note: patients were also undergoing mild caloric restriction and exercise] (Colker et al., 1999).

When applied topically as a 25% emulsion, 20% oil in alcohol, or in pure form, oil of bitter orange reportedly cured patients with tinea corporis, cruris, and pedis within one to four weeks. The pure form produced mild irritation but no other side effects were reported (Ramadan et al., 1996). In volunteers receiving skin applications of bitter orange peel oil expressed (5 µL/cm² of 100% oil) under occlusion followed by exposure to visible light or ultraviolet A, phototoxic reactions in all subjects were observed (Kaidbey and Kligman, 1980; cited by IFRA, 2002).

9.1.2 Chemical Disposition, Metabolism, and Toxicokinetics

No studies evaluating disposition, metabolism, or kinetics of administered bitter orange products were available.

Octopamine

Rossi-Fanelli et al. (1976) reported that normal subjects had <1 ng octopamine per milliliter blood. Kobayashi et al. (1980) reported normal human urinary concentrations of free and total octopamine were 5.7 and 3.48 ng/mg creatinine, respectively.

A number of authors have indicated that low concentrations of octopamine are present in the CNS and peripheral tissues of vertebrates (Paterson et al., 1990; Tallman et al., 1976 [both cited by Bunzow et al., 2001]; Watson et al., 1990; Yonekura et al., 1988); it is thought to be a metabolic byproduct of catecholamine biosynthesis (Bunzow et al., 2001). A study in rats indicated that levels of p-octopamine drastically decrease in the hypothalamus and telencephalon after 20 months of age; the change appears to be related to a decrease in aromatic L-amino acid...
Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3]

06/2004

decarboxylase activity (David et al., 1989). The authors concluded that \(p \)-octopamine may have some pathways that are independent of catecholamine metabolism, and that it may have a role in the normal activity of the brain.

In rats, \(m \)- and \(p \)-octopamine are present in similar concentrations in the heart, spleen, and liver. Both are also present in the adrenals, vas deferens, brain, kidney, large intestine, bladder, and lungs, although the concentration of \(p \)-octopamine is 30 to 60% higher than that of \(p \)-octopamine in these organs. Endogenous concentrations of \(p \)-octopamine (measured by GC/MS) in tissues of Sprague-Dawley rats were reported as the following: 0.8 ng/g in brain; 1.1 ng/g in liver; 2.0 ng/g in lung, large intestine, heart, spleen, bladder, and kidney; 9.2 ng/g in vas deferens; and 103 ng/g in adrenals. After monoamine oxidase inhibition, concentrations rose to 163 – 370 ng/g in spleen, heart, adrenals, and vas deferens and to 18 – 76 ng/g in the other organs (Ibrahim et al., 1985).

The main urinary metabolites of the \(o \)-, \(p \)-, and \(m \)-octopamine in rats are \(o \)-hydroxymandelic acid (OHMA), \(p \)-hydroxymandelic acid (PHMA), and \(m \)-hydroxymandelic acid (MHMA), respectively. Intraperitoneal administration of 6-hydroxydopamine (which causes long lasting depletion of norepinephrine) caused the daily urinary output of PMHA and MHMA to drop by 50%; levels of PHMA were restored to normal more rapidly than MHMA. The authors concluded that \(m \)- and \(p \)- (but not \(o \)-) octopamine coexist with the catecholamines in sympathetic nerve terminals. Both follow the same biosynthetic pathway following chemical sympathectomy; turnover of \(p \)-octopamine is more rapid (Ibrahim and Williams, 1985). The excretion rate of PHMA in vertebrates was similar to that of norepinephrine and vanillylmandelic acid (3-methoxy-4-hydroxymandelic acid). Octopamine concentrations were lower than those of norepinephrine suggesting that the turnover rate may be very high. When octopamine biosynthesis was inhibited by blocking dopamine \(\beta \)-hydroxylase [involved in conversion of \(p \)-tyramine to octopamine], endogenous octopamine concentrations decreased by 50% within 2.6 hours, much faster than the 50% decrease in norepinephrine observed at 13 to 15 hours (David and Coulon, 1985).

Endogenous octopamine concentrations in mammalian brain and heart reported between 1963 and 1982 were generally in the range 1 to 100 ng/g wet tissue (most values were less than 50 ng/g). Concentrations reported for the human brain were 2 ng/g for the parietal lobe, 10.4 ng/g for the temporal lobe, 20 ng/g for the locus ceruleus, and 80 ng/g for the hypothalamus. Human blood platelets contained 0.007 ng/organ and serum contained 4.6 ng/organ. Reported plasma octopamine concentrations in humans, monkeys, and dogs were 0.45, 0.34, and 0.69 ng/mL, respectively. Concentrations in cerebrospinal fluid were 0.50 ng/mL in the monkey and 0.25 ng/mL in the dog (David and Coulon, 1985).

Synephrine
Following i.v. administration of tritiated synephrine to six patients (given by infusion for 10-63 min), about 66% and 10% of the administered dose (0.399 to 0.878 mg) was recovered in the urine as deaminated PHMA and unchanged synephrine, respectively. Free synephrine concentrations in serum ranged from 0.05 to 0.52 ng/mL six hours after dosing. A similar elimination pattern was seen following oral ingestion of synephrine by ten patients, except that only 2.5% of the dose was recovered as unchanged synephrine. The biological half-life was about two hours. Peak concentrations were observed between one and two hours after oral
administration. Free synephrine in the serum ranged from 0.14 to 2.48 ng/mL six hours after oral doses of about 6 mg. The pharmacokinetic parameters after i.v. infusion were said to be similar to those of structurally analogous sympathomimetics. The area under the curve (AUC) for the individual subjects ranged from 191.8 to 808.6 ng/mL, the volume of distribution (Vd,β) ranged from 132 to 647 L, and the total clearance ranged from 493 to 2940 mL/min. Renal clearance (Clren) ranged from 37.0 to 283.2 mL/min (Hengstmann and Aulepp, 1978).

In rats given 62 µg tritiated synephrine per 100 g body weight i.v., the highest tissue concentrations were seen after 30 minutes in the heart (178.7 ng/g), adrenals (150.8 ng/g), kidneys (102.4 ng/g); liver (58.7 ng/g) and plasma (44.9 ng/g). After four hours, tissue concentrations were: adrenals (72.5 ng/g); kidneys (33.2 ng/g); liver (54.8 ng/g); and plasma (13.4 ng/g). Concentrations in other rat organs four hours after dosing ranged from 7.3 ng/g in brain to 68.2 ng/g in spleen (Hengstmann and Aulepp, 1978).

Octopamine and Sympathomimetics
Trace amounts of p- and m-octopamine and p- and m-synephrine were determined in the plasma and platelets of healthy subjects by a multi-channel electrochemical HPLC system (D'Andrea et al., 2003a). Mean plasma concentrations of synephrine were 4.06 ng/mL in six of eight male subjects and 5.02 ng/mL in five of eight female subjects. Mean intra-platelet concentrations were 0.26 ng/10⁸ platelets in all males and 0.41 ng/10⁸ platelets in all females. Mean plasma concentrations of octopamine were 1.95 ng/mL in males (8/8) and 3.12 ng/mL in females (8/8). Mean concentrations in platelets were 0.25 ng/10⁸ in males (8/8) and 0.42 ng/10⁸ in females (7/8). [Note that the plasma concentrations detected in this study by HPLC were an order of magnitude higher than those found by Andrew et al. (1993).]

Low and inconsistent concentrations of unconjugated p-synephrine, p-octopamine, and other noncatechol monoamines were determined in the plasma of normotensive subjects by GC/negative-ion chemical ionization MS. p-Synephrine was found at a mean concentration of 58 pg/mL (range not detected [ND] to 235 pg/mL) in 14 subjects and p-octopamine was found at a mean concentration of 53 pg/mL (ND to 300 pg/mL) in 12 subjects (Andrew et al., 1993). In a study comparing hypertensive to normotensive human subjects, there were no significant differences in the concentrations of p- and m-octopamine and p- and m-synephrine in the urine (Watson et al., 1990).

Sympathomimetics and Biochemical Parameters
Synephrine and octopamine were found to be common substrates for both type A and type B monoamine oxidases in rat brain mitochondria in vitro. For synephrine, the Michaelis-Menten constant (Km) and maximum velocity of the reaction (Vmax) were 250 µM and 32.6 nmol/mg protein/30 min, respectively (Suzuki et al., 1979a,b). Pharmacokinetic studies of octopamine were published by Gillis and Roth (1977) (rabbit perfused lung) and Egashira et al. (1984) (monkey brain mitochondria) but Km and Vmax values were not given in the abstracts.

In a study investigating the biochemical parameters of tyrosine hydroxylase deficiency, the authors indicated that biosynthetic pathways from l-tyrosine to norepinephrine and epinephrine are possible via p-tyramine, octopamine, and synephrine (Bräutigam et al., 1998).

The metabolism of octopamine and synephrine to dopamine is mediated by human CYP2D6 (Hiroi et al., 1998; cited by Tyndale et al., 1999).
Tyramine
Because tyramine is rapidly metabolized by monoamine oxidase (MAO) in the gut and liver, ingested tyramine does not exert its sympathomimetic effects. However, patients taking MAO inhibitors may experience hypertensive crisis. For example, an "average meal of natural or aged cheeses contains enough tyramine to provoke a marked rise in blood pressure and other cardiovascular changes" in such patients. Effects of an antihypertensive drug have also been studied in volunteers given high tyramine doses (20 mg/kg) to induce pressor effects (HSDB, 2002).

9.1.3 Acute Exposure
Acute toxicity values for octopamine and synephrine and its hydrochloride are given in Table 2.

<table>
<thead>
<tr>
<th>Route</th>
<th>Species (sex and strain)</th>
<th>LD₅₀/LD₅₀/TD₅₀</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.c.</td>
<td>mouse (sex and strain n.p.)</td>
<td>LD₅₀ = 2070 mg/kg (13.51 mmol/kg)</td>
<td>RTECS (1996a)</td>
</tr>
<tr>
<td>i.p.</td>
<td></td>
<td>LD₅₀ = 600 mg/kg (3.92 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td>i.v.</td>
<td></td>
<td>LD₅₀ = 75 mg/kg (0.49 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td>i.c.</td>
<td></td>
<td>LD₅₀ = 2100 mg/kg (13.71 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td>oral</td>
<td></td>
<td>LD₅₀ = 4200 mg/kg (27.42 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td>s.c.</td>
<td>rat (sex and strain n.p.)</td>
<td>LD₅₀ = 350 mg/kg (2.28 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td>i.p.</td>
<td></td>
<td>LD₅₀ = 1350 mg/kg (8.813 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td>oral</td>
<td></td>
<td>LD₅₀ = 1240 mg/kg (8.095 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td>i.v.</td>
<td>guinea pig (sex and strain n.p.)</td>
<td>LD₅₀ = 200 mg/kg (1.31 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td>s.c.</td>
<td>mouse (sex and strain n.p.)</td>
<td>LD₅₀ = 1500 mg/kg (8.971 mmol/kg)</td>
<td>RTECS (1996b)</td>
</tr>
<tr>
<td>i.p.</td>
<td>mouse (sex and strain n.p.)</td>
<td>LD₅₀ = 1000 mg/kg (5.981 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td>i.v.</td>
<td>mouse (sex and strain n.p.)</td>
<td>LD₅₀ = 270 mg/kg (1.61 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rabbit (sex and strain n.p.)</td>
<td>LD₅₀ = 150 mg/kg (0.897 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td>s.c.</td>
<td>mouse (sex and strain n.p.)</td>
<td>LD₅₀ = 700 mg/kg (4.19 mmol/kg)</td>
<td>RTECS (2003a)</td>
</tr>
<tr>
<td>oral</td>
<td>mouse (sex and strain n.p.)</td>
<td>TD₅₀ = 1 mg/kg (6 µmol/kg)</td>
<td></td>
</tr>
<tr>
<td>s.c.</td>
<td>mouse (sex and strain n.p.)</td>
<td>LD₅₀ = 1500 mg/kg (8.971 mmol/kg)</td>
<td>RTECS (2003b)</td>
</tr>
<tr>
<td>oral</td>
<td>mouse (sex and strain n.p.)</td>
<td>TD₅₀ = 0.3-3 mg/kg (2-18 µg/kg)</td>
<td></td>
</tr>
</tbody>
</table>
Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3]

Table 2. Acute Toxicity Values for Octopamine, Synephrine, and Its Hydrochloride (Continued)

<table>
<thead>
<tr>
<th>Route</th>
<th>Species (sex and strain)</th>
<th>LD₅₀/LD₅₀/TD₅₀</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(±)-p-Synephrine hydrochloride [5985-28-4]</td>
<td>mouse (sex and strain n.p.)</td>
<td>LDLo = 400 mg/kg (1.96 mmol/kg)</td>
<td>RTECS (1997)</td>
</tr>
<tr>
<td>s.c.</td>
<td>rat (sex and strain n.p.)</td>
<td>LDLo = 320 mg/kg (1.57 mmol/kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>guinea pig (sex and strain n.p.)</td>
<td>LDLo = 500 mg/kg (2.45 mmol/kg)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: i.c. = intracerebral; i.p. = intraperitoneal; i.v. = intravenous; LD₅₀ = lethal dose for 50% of test animals; LD₉₀ = lethal dose, low; n.p. = not provided; s.c. = subcutaneous; TD₉₀ = toxic dose low of any route, other than inhalation, over any period of time and reported to produce carcinogenic, neoplastic, or teratogenic effects in animals or humans or to produce any toxic effect in humans

Bitter Orange Peel

In adult male Swiss mice treated orally by gavage with essential oil from C. aurantium peel (0.5 or 1.0 g/kg), the latency period of tonic seizures (induced by pentylentetrazole or maximum electroshock) was increased. In addition, treatment with the higher dose significantly increased hypnotic activity (induced by sodium pentobarbital) and anxiolytic activity (i.e., permanence in the open arms of the maze) (Carvalho-Freitas and Costa, 2002).

Sprague-Dawley rats orally administered a single dose of TJ-41 (up to 10 g/kg) or TJ-43 (2 or 8 mg/kg), herbal drug mixtures containing ~10% of the fruit peel, showed no toxic signs and no deaths were reported (Iijima et al., 1995; Kanitani et al., 1995).

Synephrine

Subcutaneous (s.c.) injection of p-synephrine (1500 mg/kg [8.971 mmol/kg]) caused sensory organs effects (not specified), convulsions, and respiratory stimulation in mice (RTECS, 1996b). Administration of (R)-(−)-p-synephrine (700 mg/kg [4.19 mmol/kg]) and the S-enantiomer (1500 mg/kg [8.971 mmol/kg]) by s.c. injection also caused convulsions, as well as dyspnea and cyanosis in the animals; oral administration of the compounds (1 mg/kg [6 µmol/kg] R and 0.3 mg/kg [2 µmol/kg] S) increased body temperature (RTECS, 2003a).

9.1.4 Short-term and Subchronic Exposure

When Sprague-Dawley rats were orally given TJ-41 (500 or 2500 mg/kg), an herbal drug mixture containing ~10% of the C. aurantium fruit peel, daily for 13 weeks, no drug-related abnormalities in body or organ weights, food consumption, ophthalmology, urinalysis, hematological examination, blood biochemical examination, gross pathological examination, or microscopic examination were observed (Iijima et al., 1995). A similar experiment with another herbal medicinal preparation containing ~10% peel, TJ-43 (125, 500, or 2000 mg/kg), produced the same results (Kanitani et al., 1995). [Note: The Japanese herbal mixtures, TJ-41 and TJ-43, are a dried decoctum of ten and eight herbal drugs, respectively.]

Oral administration (gavage) of C. aurantium fruit hydroalcoholic extracts standardized to 4 or 6% synephrine (doses of 2.5, 5, 10, or 20 mg/kg for each extract) to male Sprague-Dawley rats for 15 days caused a significant and dose-dependent decrease in food intake and body weight gain. Deaths occurred in all treatment groups: at the low dose, 10% mortality was seen with both extracts; at the high dose, 30 and 50% mortalities were reported for extracts standardized to 4
and 6%, respectively. No marked changes were seen in blood pressure; however, ventricular arrhythmias with enlargement of the QRS complex were observed (Calapai et al., 1999).

9.1.5 Chronic Exposure
No data were available.

9.1.6 Synergistic/Antagonistic Effects
The ability of citrus juice to inhibit organic anion transporting polypeptide-mediated drug uptake and other drug interactions has been reported (Dresser et al., 2002; Malhotra et al., 2001; Mohri and Uesawa, 2001; Zychlinski and Montgomery, 1984). Similar to grapefruit juice, sour orange juice may interact with other drugs. When healthy volunteers drank Seville orange juice after receiving a single oral dose of felodipine, a drug to lower blood pressure, peak concentrations of felodipine were two times greater than individuals drinking only common orange juice (UNC 2001, press release). In another experiment, C. aurantium was able to attenuate acute intoxication of cyclosporine in swine (Hou et al., 2000).

9.1.7 Cytotoxicity
No data were available.

9.2 Reproductive and Teratological Effects
In rats, daily intramuscular injection of synephrine (55 or 110 mg/kg [0.33 or 0.66 mmol/kg]) on days 7-16 of pregnancy decreased the number of uterine implants and viable fetuses, increased mean fetal weight and the number of micro fetuses, and retarded cranial and thoracic ossification. Additionally, renal and intestinal hemorrhage, brain hypoplasia, and unilateral microphthalmia were reported in some fetuses (Scrollini et al., 1970).

9.3 Carcinogenicity
No data were available.

9.4 Initiation/Promotion Studies
No data were available.

9.5 Anticarcinogenicity
No data were available.

9.6 Genotoxicity
Only two genotoxicity studies were identified. In Aspergillus nidulans diploid strains, octopamine (dose n.p.) did not induce non-disjunction or crossing-over (Bignami et al., 1974). In the L5178Y mouse lymphoma assay, synephrine (20-3600 µg/mL [120 µM-21.53 mM]) was inactive (McGregor et al., 1988).

9.7 Cogenotoxicity
No data were available.

9.8 Antigenotoxicity
No data were available.
9.9 Immunotoxicity
Oral administration of extracts of the peel of bitter orange, as well as of the immature fruit, led to decreased cell viability of splenocytes and thymocytes in BALB/c mice (Yum and Eun, 1998). Oral administration of aqueous extracts of the immature fruit also inhibited Type I allergic reactions in rats (Koda et al., 1982).

9.10 Other Data
Synephrine, octopamine, A. nobilis pericarpium, and/or extracts of C. aurantium have also been studied for effects on cellular function, neurological activity, enzyme activity, the cardiovascular system, and the blood and hematopoietic system.

Effects on Cell Growth
Octopamine was assessed for inhibitory effects on human keratinocyte mitosis in vitro; no details were provided in the abstract (Harper and Flaxman, 1975). Compounds isolated from extracts of the immature C. aurantium fruit inhibited cell growth in mouse leukemia L1210 and human erythroleukemia K562 cells in vitro, while methoxylated flavones isolated from extracts of the peel induced cell differentiation in mouse myeloid leukemia (M1) and human promyelocytic leukemia (HL-60) cells (Satoh et al., 1996; Sugiyama et al., 1993).

Neurological Effects
Neurological effects reported for synephrine and octopamine included increased locomotor activity, pre- and postsynaptic effects, anti-depressive activity, agonistic response toward trace amine receptors, inhibition of smooth muscle contraction, and depression of neurological function (Bulach et al., 1984; Bunzow et al., 2001; Celuch and Juorio, 1988; Chance et al., 1985; Cho et al., 1996; Coulon et al., 1989; Jagiello-Wojtowicz, 1979; Jagiello-Wojtowicz and Chodkowska, 1984; Kim et al., 2001; Lafi and Leake, 1988; Song et al., 1996).

Effects on Enzymes
Sour orange juice inhibited microsomal CYP3A-mediated testosterone 6β-hydroxylation, whereas sweet orange juices did not. C. aurantium crude drugs showed the same effects (Guo et al., 2000, 2001). Octopamine, but not synephrine, inhibited cytochrome P450c11 in vitro (Louw et al., 2000).

In a study of the inhibitory effects of citrus fruit extracts from 42 species and cultivars on rat platelet cyclooxygenase and lipoygenase, the albedo extract of C. aurantium had the highest lipoygenase inhibitory activity (Nogata et al., 1996). Additionally, bitter orange juice extract had an inhibitory effect on intestinal P-glycoprotein-related efflux carriers in vitro (Deferme et al., 2002).

In rat jejunal mucosa, octopamine (10 mM) inhibited histamine-N-methyltransferase. It was suggested that the compound might play a vital role in the chemical potentiation of histamine toxicity (Taylor and Leiber, 1979).
Cardiovascular Effects
In humans, rats, guinea pigs, cats, and/or dogs, synephrine, octopamine, and extracts of *C. aurantium* have been evaluated for effects on the cardiovascular system that include changes in blood pressure, cardiovascular toxicity, contractility and excitability of the heart muscle, and/or adrenergic activity (e.g., Calapai et al., 1999 [see subsection 9.1.4]; Ress et al., 1980; Yen and Chung, 1981). Pressor effects and the ability to restore contractility and excitability to heart muscle were reported for synephrine and octopamine (Altura, 1975; Chen et al., 1990; Jia et al., 1983; Ledda et al., 1980).

Effects on Blood and Hematopoietic System
Hypertensive rats administered synephrine (1 mg/kg) via gavage for eight days had significantly reduced portal venous pressure, portal tributary blood flow, and cardiac index. Mean arterial pressure, vascular resistance, and systemic and portal territory were improved (Huang et al., 2001b). When infused into hypertensive rats, synephrine (0.095, 0.19, or 0.38 mg/kg/min) dose-dependently reduced portal pressure and elevated mean arterial pressure (Huang et al., 1995).

Bitter orange peel (in Jupi, a Chinese herbal prescription) promoted human platelet aggregation (Okuyama et al., 1987).

Miscellaneous Studies
In white fat cells of the rat, hamster, and dog, synephrine partially stimulated lipolysis. Octopamine was fully lipolytic in garden dormouse, rat, hamster, and dog fat cells but was inefficient in guinea pig or human fat cells; its effects were similar to those of β_3-adrenoceptor agonists (Carpéné et al., 1999; Fontana et al., 2000). At high concentrations, it can reduce the lipolytic effect of norepinephrine (David and Coulon, 1985). In mature 3T3-L1 cells, bitter orange peel stimulated lipolysis (Sakuramata and Kusano, 1998).

Synephrine (dose n.p.), isolated from the leaves and juice of immature *C. aurantium* fruit, inhibited uterine contraction induced by serotonin in rats (Kinoshita et al., 1979). D,L-Synephrine (10 µM [1.7 µg/mL]) stimulated aromatization of testosterone in Sertoli cell-enriched cultures from 19-day-old rats; the effect was inhibited by propranolol and phenoxybenzamine, potent α-adrenergic antagonists (Verhoeven et al., 1979). Additionally, octopamine and synephrine (1 µM - 1 mM) enhanced progesterone production in bovine luteal cells *in vitro*; addition of norepinephrine and epinephrine significantly increased the effect (Battista and Condon, 1986).

9.11 Receptor Pharmacology of Octopamine, Sympathomine, and Other Biogenic Monoamines
Adrenergic Receptors (Adrenoceptors)
According to terminology in the NLM MeSH Database, structural analogs of ephedrine, epinephrine, and norepinephrine are agonists for both α- and β-adrenoceptors, while synephrine, octopamine, and phenylephrine are α-adrenoceptor agonists and tyramine is an indirect sympathomimetic. However, some studies were found in which synephrine and octopamine were also agonists at β-adrenoceptors. Appendix C lists the physiological effects observed with activation of the various types of α- and β-adrenoceptors. [Note: No original primary publications were retrieved. This discussion is largely limited to PubMed records with abstracts]
for mammalian studies that included epinephrine or norepinephrine as well as synephrine or octopamine.]

In vitro studies of the adrenergic activity of p-octopamine and p-synephrine compared to that of norepinephrine showed that p-octopamine and p-synephrine were generally orders of magnitude less potent than norepinephrine. p-Octopamine was more active than p-synephrine in some studies and less or equally active in other studies. m-Octopamine (norfenefrine) and m-synephrine (phenylephrine) were generally more potent than their para counterparts.

In a review of the older literature, David and Coulon (1985) noted that the effects of octopamine in the rat were blocked by alprenolol (a β-adrenoceptor antagonist), phentolamine (a nonselective α-adrenoceptor antagonist), phenoxybenzamine (a long-acting α-adrenoceptor antagonist), and yohimbine (an α2-adrenoceptor antagonist) but were unchanged in the presence of propranolol (a nonspecific β-adrenoceptor antagonist).

α-Adrenergic Activity
In studies of α-adrenergic activity, octopamine was between 60 and 15,000 times less active than norepinephrine in inducing contractions in rat arteriole and metarteriole preparations *in vitro* (Altura, 1975). The activities of o-, m-, and p-octopamine in contracting rat aortic smooth muscle *in vitro* were 0.7500, 0.0075, and 0.0038 times that of m-synephrine (Ress et al., 1980).

Brown et al. (1988) studied the relative activity of the (-)- and (+)-forms of m- and p-octopamine and m- and p-synephrine, compared to that of norepinephrine, on α1-adrenoceptors from rat aorta and anococcygeus and α2-adrenoceptors from rabbit saphenous vein. In rat aorta, the (-)-m-isomers were 6-fold less active than norepinephrine and the (-)-p-isomers were 1000-fold less active on the α1- andrenoceptors. In rat anococcygeus, the (-)-m isomers were also more potent than the (-)-p-isomers, which were 30-fold less active than norepinephrine. The (-)-m-isomers were 150-fold less active than norepinephrine and the (-)-p-isomers were 1000-fold less active on the α2-adrenoceptors from rabbit saphenous vein. In tests with the (+)-isomers, the potencies were 1 to 2-fold lower than those of their (-)-counterparts. The relative potency of the (+)-isomers was norepinephrine > m-octopamine > m-synephrine > p-octopamine > p-synephrine.

At the α1- and α2-binding sites in rat cerebral cortex, the (-)-forms of m- and p-synephrine and octopamine were more active than the (+)-forms. The relative order of activity of the (-)-forms for both binding sites was norepinephrine > m-octopamine = m-synephrine > p-synephrine > p-octopamine (Brown et al., 1988).

In aortic smooth muscle of spontaneously hypertensive rats with α1- or α2-adrenoceptors blocked by prazosin and yohimbine, respectively, the octopamine isomers and m-synephrine were shown to exert contractile responses by stimulating the α1-adrenoceptors. The relative potencies in the presence of prazosin were p-octopamine > m-octopamine > m-synephrine > o-octopamine (Rahmani et al., 1987).

Racemic o-, m-, and p-octopamine increased blood pressure in pentolinium-blocked rats, with racemic m-octopamine having the greatest α-adrenergic activity, which was 100-fold less than
that of norepinephrine. The activities o-, m-, and p-octopamine were 0.01, 0.005, and 0.007 times that of norepinephrine, respectively (Fregly et al., 1979).

In a study of the α-adrenoceptor subtypes, norepinephrine and racemic m- and p-octopamine showed the same rank order in their agonist potencies for human cloned α1A-, α1B-, and α1D-adrenoceptors expressed in CHO cell lines: norepinephrine > m-octopamine > p-octopamine (Richardson et al., 2003).

\[\beta \text{-Adrenergic Activity} \]
In isolated, perfused rabbit heart, p-octopamine and m-synephrine showed preference for chronotropic (increased rate of heart contractions) and inotropic (increased force of heart contractions) stimulation, respectively. The actions were antagonized by propranolol but not by pretreatment with reserpine, cocaine, butoxamine, or phenoxybenzamine, which indicated that the selective actions were exerted directly at β1-receptors (Ferguson and Vazquez, 1984).

Racemic o-, m-, and p-octopamine did not show significant β-adrenergic activity in rats compared to that of the β-adrenergic agonist isoproterenol as determined by initiation of thirst and increase of tail skin temperature (Fregly et al., 1979).

The potency of the (-)-forms of m- and p-octopamine and m- and p-synephrine, relative to norepinephrine, on β1 adrenoceptors in guinea pig atria and trachea was norepinephrine > m-synephrine > m-octopamine = p-octopamine > p-synephrine. Norepinephrine was 100-fold more active than m-synephrine, 6000-fold more active than m- and p-octopamine, and 40,000-fold more active than p-synephrine. The (+)-forms of the isomers were about one to two orders of magnitude less active than norepinephrine on the β1 adrenoceptors Norepinephrine activity on β2 adrenoceptors was more than four orders of magnitude greater than the activities of the (-)-forms, while concentrations of the (+)-forms up to 0.0001 M had no effect on β2 adrenoceptors (Jordan et al., 1987).

Octopamine was reported to be a selective β3-adrenoceptor agonist, stimulating fat cell lipolysis by β3-adrenoceptor activation rather than by activation of other adrenoceptor subtypes (Galitzky et al., 1993; Carpéné et al., 1999; Fontana et al., 2000). However, octopamine given to genetically obese Zucker rats (i.p. injection with 81 μmol/kg per day for four weeks) elicited a 19% decrease in body weight gain, but it was not accompanied by changes in lipolytic response or stimulation of glucose transport by insulin. The dosed rats did show lower plasma insulin than that of the untreated rats. The authors concluded "that octopamine can reduce body weight gain in obese rats, without apparent adverse effects, but with less efficacy than β3-adrenoceptor agonists" (Bour et al., 2003). Synephrine was only a partial β3-adrenoceptor agonist (Carpéné et al., 1999).

\[\text{Trace Amine Receptors} \]
David and Coulon (1985) reviewed several older studies that indicate specific receptors for octopamine and other trace amines may exist in vertebrates. For example, one study reported that octopamine activity was inhibited by specific blocking agents that had no effect on norepinephrine and dopamine activity. At the time of the review, an octopamine-sensitive
adenylate cyclase had been found in only the caudate nucleus of the rat brain, and no specific octopamine antagonist had been identified.

Using appropriate antagonists for different types of receptors, Varma et al. [publication not identified] showed that octopamine-induced relaxation in rat aorta preparations was not mediated via α1-, α2-, β1-, or β2-adrenoceptors or via 5-hydroxytryptamine (serotonin; 5-HT), histamine, or adenosine receptors. In further experiments, catecholamines were inactive in endothelium-denuded rat aortic strips when α1- and β1-receptors were blocked but the noncatecholamines were active with a relative potency of methoxyphenamine > tyramine > p-hydroxyephedrine, L-amphetamine > L-ephedrine > phenylethylamine > synephrine > methoxamine > octopamine. The authors suggested that novel tyramine receptors might explain the rat aorta relaxation activity they observed (Varma et al., 1995).

More recent evidence for a family of G protein-coupled receptors specific for trace amines in human, rat, and mouse tissues was published in 2001 (Borowsky et al. [Synaptic Pharmaceutical Corporation], 2001). These trace amine receptors are related to the classical biogenic amine receptors. Four human receptors (designated TA1, TA3, TA4, and TA5) and 14 rat receptors (TA1-4 and TA6-15) were identified. The TA1 receptor is coupled to the stimulation of adenylate cyclase via a Gαs G protein. Human TA1 is moderately expressed in the stomach and, to a lesser degree, the kidney, lung, and small intestine; and traces are expressed in numerous other tissues. TA1 receptors are more widespread in the brain of mice than of humans. Tyramine and β-phenethylamine (β-PEA) are potent activators while octopamine, dopamine, and tryptamine have lower agonist activity. Tryptamine and β-PEA also activate the rat TA2 receptor.

Bunzow et al. [Oregon Health and Science University] (2001) also discovered a rat G-protein-coupled trace amine receptor (rTAR1 = rat TA1). Drugs that stimulated cAMP production mediated by this receptor included racemic synephrine and octopamine; amphetamines; ergoline; and dopamine, as well as a few dopamine-, adrenergic-, and serotonin-receptor drugs. These findings support a "novel intercellular signaling system found widely throughout the vertebrate brain and periphery" in which the effects of trace amines, catecholamine metabolites, and amphetamines may be partially mediated. In assays with human embryonic kidney cells (HEK293) stably expressing the rTAR1 sequence, the relative potency for the stimulation of cAMP production was p-tyramine > β-PEA > tryptamine > synephrine > octopamine > m-tyramine ≥ dopamine > 5-HT >> epinephrine > norepinephrine.

Other sources have stated that trace amine receptors may be important in drug discovery for treatment of disorders such as schizophrenia, depression, attention deficit disorder, and Parkinson's disease (Branchek and Blackburn, 2003; Premont et al., 2001; Travis, 2001). According to a newsletter published by the National Institute on Drug Abuse, the results of the study by Bunzow et al. (2001) "indicate that the activation of TAR may be responsible for some of the psychological effects of psychostimulants; therefore TAR may represent an important new target for the development of anti-psychostimulant medications" (NIDA, 2002). D'Andrea et al. (2003b) summarized evidence that supports a role for trace amines in migraine and cluster headache pathogenesis, which has been recently bolstered by the findings of the trace amine
receptors and the ability to measure endogenous concentrations of the amines with non-radioactive methods.

Dopamine Receptors
A few studies have implicated dopamine receptors in the physiological activities of octopamine and other trace amines. For example, \(p \)-octopamine, \(p \)-tyramine, and PEA lowered prolactin levels (hypoprolactinemic effect) induced in rats by immobilization stress or by swimming. The effect may have been mediated by dopamine release or direct dopaminergic action since blocking dopaminergic receptors \textit{in vitro} prevented the hypoprolactinemic effects of octopamine and PEA (Becu-Villalobos et al., 1992). The relaxant effect of octopamine on isolated rabbit intestinal smooth muscle, accompanied by direct stimulation of adenylate cyclase and cAMP production, may also be mediated by dopamine D-1 receptors. Octopamine-induced effects were not altered by antagonists of any type of adrenergic receptor or by antagonists of dopamine D-2, but were totally blocked by a dopamine D-1 antagonist (Cheng and Hsieh-Chen, 1988). In the rat striatum \textit{in vitro} octopamine also bound and blocked the dopamine D-1 receptor (Cheng and Tsai, 1991; Cheng et al., 1990).

10.0 Structure-Activity Relationships
This subsection discusses the physiological effects, including toxicity, of certain structural analogs of synephrine that have been extensively tested. Abstracts of several primary studies that compared the adrenergic effects of synephrine and/or octopamine with those of other biogenic amines were described in subsection 9.11. No attempt was made to be comprehensive. Much of the focus has been on cardiovascular effects because the bitter orange dietary supplements are promoted as safer than the ephedra preparations, which have cardiotoxic potential. Terminology regarding adrenergic receptors (also called adrenoceptors) and other receptors that may be involved in the physiological activity of synephrine, octopamine, and their structural analogs is explained in Appendices C and D.

The compounds discussed in this section were selected primarily from phenylethylamine and phenylpropanolamine analogs in \textit{The Merck Index} (Budavari, 1996) and in a recent edition of \textit{Casarett and Doull\'s Toxicology} (Klaassen, 2001). The latter source discussed mechanisms of cardiotoxicity of positive inotropic drugs and related agents. Among these, structural analogs of synephrine and octopamine included the catecholamines; several bronchodilators including ephedrine and terbutaline; nasal decongestants including phenylephrine, phenylpropanolamine, and pseudoephedrine; and appetite suppressants such as amphetamines.

A general Markusch structure represents the group of compounds in Table 3 that are mentioned in this subsection. The physiological activities/therapeutic uses of the compounds in the table are generally those listed in \textit{The Merck Index} (Budavari, 1996). Table 4 summarizes the structure-adrenergic activity relationships for various substitution patterns on this basic structure.
<table>
<thead>
<tr>
<th>Names</th>
<th>CAS RN</th>
<th>Adrenoceptor</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(±)-p-Synephrine</td>
<td>94-07-5</td>
<td>α and β</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H Vasoressor</td>
</tr>
<tr>
<td>(±)-p-Octopamine</td>
<td>104-14-3</td>
<td>α and β</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Adrenergic (listed if no other therapeutic category). Weak β1 agonist (Jordan et al., 1987). Selective β3 agonist (Carpéné et al., 1999).</td>
</tr>
<tr>
<td>Phenylephrine; m-Synephrine</td>
<td>59-42-7</td>
<td>α1 and β1</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>Primarily a direct-acting α-adenoreceptor agonist. Phenylephrine was the only adrenergic phenethylamine listed as an α1-adenoreceptor agonist by Griffith (2003). Hydrochloride is a mydriatic and decongestant.</td>
</tr>
</tbody>
</table>
Table 3. Phenylethylamine and Phenylpropanolamine Structural Analogs of Synephrine and Octopamine (Continued)

<table>
<thead>
<tr>
<th>Names</th>
<th>CAS RN</th>
<th>Adrenoceptor</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoproterenol; Epinephrine isopropyl homolog</td>
<td>7683-59-2</td>
<td>β1 and β2</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>t-Pr</td>
<td>H</td>
<td>H</td>
<td>(-)-Pr = -CH(CH3)2 [isopropyl]. Bronchodilator.</td>
</tr>
<tr>
<td>Methoxyphenamine</td>
<td>93-30-1</td>
<td>β</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH3</td>
<td>H</td>
<td>CH3</td>
<td>CH3O</td>
<td>H</td>
<td>Bronchodilator.</td>
</tr>
<tr>
<td>Terbutaline</td>
<td>23031-25-6</td>
<td>β2</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>t-Bu</td>
<td>H</td>
<td>OH</td>
<td>(-)-Bu = -C(CH3)2. Bronchodilator.</td>
</tr>
<tr>
<td>Albuterol: Salbutamol</td>
<td>18559-94-9</td>
<td>β2</td>
<td>OH</td>
<td>-CH2OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>t-Bu</td>
<td>H</td>
<td>H</td>
<td>Bronchodilator.</td>
</tr>
<tr>
<td>Phenylethanolamine</td>
<td>7568-93-6</td>
<td>β3</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Sulfate is a topical vasoconstrictor. β3 agonist (Carpéné et al., 1999). / β antagonist (Wong et al., 1987).</td>
</tr>
<tr>
<td>L-(+)- or d-Pseudoephedrine; threo-2-(Methylamino)-1-phenylpropan-1-ol</td>
<td>90-82-4</td>
<td>Note I</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>CH3</td>
<td>H</td>
<td>CH3</td>
<td>H</td>
<td>H</td>
<td>Nasal decongestant.</td>
</tr>
<tr>
<td>Phenylpropanolamine; l-Norephedrine</td>
<td>492-41-1</td>
<td>Note I</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>CH3</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Hydrochloride is used as an anorexic, decongestant, and bronchodilator.</td>
</tr>
<tr>
<td>Hordenine; N,N-Dimethyltyramine</td>
<td>539-15-1</td>
<td>Note I</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH3</td>
<td>CH3</td>
<td>H</td>
<td>H</td>
<td>Hordenine is a bitter orange peel constituent that is also found in barley.</td>
</tr>
<tr>
<td>p-Tyramine</td>
<td>51-67-2</td>
<td>Note I</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Adrenergic.</td>
</tr>
<tr>
<td>Amphetamine: Phenedrine</td>
<td>300-62-9</td>
<td>Note I</td>
<td>H</td>
<td>H</td>
<td>CH3</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Fenfluramine</td>
<td>458-24-2</td>
<td>[Serotonin-ergetic or serotonin-releasing]</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH3</td>
<td>H</td>
<td>Et</td>
<td>H</td>
<td>CH3</td>
<td>Et = CH3CH=NH. Anorexic. A constituent of the diet drug Fen-Phen (with phentermine). Dexfenfluramine (Redux) and fenfluramine were associated with valvular heart disease. All three drugs have been removed from the market (Fen-Phen-Legal-Resources.com, 2003). Sympathetic overactivity in Fen-Phen combination (Koury et al., 1999) [case report of an overdose]. Racemic fenfluramine has catecholamine effects, but the d-enantiomer does not. It is a nonadrenergic uptake inhibitor (Cleare et al., 1997). Serotoninergic (Carek and Dickerson, 1999); serotonin uptake inhibitor (ChemIDplus). "Fenfluramine evokes 5-HT2A receptor-mediated responses but does not displace [11C]MDL 100907, a specific receptor binding agent" (Hirani et al., 2003).</td>
</tr>
</tbody>
</table>

Note I: Indirect-acting sympathomimetic that induces norepinephrine release.
Table 4. Structure-Activity Relationships Among Adrenergic Receptor Agonists

<table>
<thead>
<tr>
<th>Structure*</th>
<th>Agonist Activity at Adrenergic Receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 = R2 = OH (catecholamines; 3,4-dihydroxy-)</td>
<td>α,β</td>
</tr>
<tr>
<td>R2 = OH (m- or 3-hydroxy-)</td>
<td>More α activity</td>
</tr>
<tr>
<td>R3 = OH (p- or 4-hydroxy-)</td>
<td>More β activity</td>
</tr>
<tr>
<td>R2 = R8 = OH (3,5-dihydroxy-) + large R5</td>
<td>β2 selectivity</td>
</tr>
<tr>
<td>R1 = R2 = R8 = H</td>
<td>No sympathomimetic activity. Increased blood-brain barrier permeability and oral availability</td>
</tr>
<tr>
<td>Larger R5 or R6</td>
<td>Increased β selectivity with larger N-alkyl group</td>
</tr>
<tr>
<td>R5 = R6 = H (primary amino group) or R5 = H (secondary amino group)</td>
<td>Potent agonists, whereas tertiary and quaternary amines are poor agonists.</td>
</tr>
<tr>
<td>R4 = CH$_3$- OR CH$_3$CH$_2$- (methyl or ethyl)</td>
<td>Selectivity increased: α2 > α1 and β2 > β1. Longer acting since greater stability against monoamine oxidase (MAO) metabolism.</td>
</tr>
<tr>
<td>No OH in aromatic ring, β-OH present on side chain</td>
<td>Sympathomimetics with mixed mechanism of action, e.g., D(-)-ephedrine</td>
</tr>
<tr>
<td>α-CH$_3$-, N-substitution, β-OH</td>
<td>Substituents that increase activity as indirect-acting sympathomimetics, e.g., amphetamines, 4-hydroxyamphetamine, and L-(+)-pseudoephedrine</td>
</tr>
</tbody>
</table>

Source: Dutta (2003)

*Refer to the Markusch structure on page 22 of this report.

Specific Compounds or Compound Classes
Appetite Suppressants
Appetite suppressants such as amphetamines, fenfluramine, and phentermine may induce tachycardia, pulmonary hypertension, and valvular disease, possibly by elevating serotonin concentrations and inducing sodium ion channel blockade (Klaassen, 2001).

Catecholamines
Cardiotoxic effects induced by high circulating concentrations of endogenous catecholamines epinephrine and norepinephrine or by high doses of exogenous catecholamines such as isoproterenol include cardiac myocyte death in vivo and hypertrophic growth in vitro. The catecholamines increase heart rate, enhance myocardial oxygen demand, and increase systolic arterial blood pressure. Isoproterenol, however, has a hypotensive effect. Mechanisms of cardiotoxicity include:
- Activation of β1-adrenergic receptors
- Coronary vasoconstriction
- Mitochondrial dysfunction
- Elevated calcium ion concentrations
- Oxidative stress
- Apoptosis (Klaassen, 2001)
Dopamine (CAS RN 51-61-6)
The NTP testing status report (2003) stated that dopamine was weakly positive in *Salmonella* tests.

Ephedrine
A recent nomination background document for Dietary Supplements Containing Ephedrine Alkaloids (http://ntp-server.niehs.nih.gov/htdocs/Chem_Background/ExSumPdf/ephedrinealkaloids.pdf) provided an extensive toxicity review for ephedrine, pseudoephedrine, and ephedra preparations (TRI, Inc., 2001). Prolonged use of ephedrine depletes norepinephrine stores in sympathetic nerves and may lead to hypotension due to direct cardiac depression and vasodilation. Toxic effects from ephedrine alkaloid supplements or ephedrine diet pills reported in the literature include vasculitis, hypersensitivity myocarditis, myocardial necrosis, cerebral infarct, thalamic infarct, hemorrhagic stroke, myocardial infarction, and deaths. Ephedrine has milder CNS stimulating activity than the amphetamines.

Large doses of ephedra alkaloids may induce tachycardia and increase the potential for occurrence of ventricular arrhythmias in the myocardium. Ephedrine, ephedrine alkaloids, ma huang, phenylephrine, phenylpropanolamine, pseudoephedrine, and bronchodilators such as albuterol, salmeterol, and terbutaline induce tachycardia by nonselective activation of β_1-adrenergic receptors (Klaassen, 2001).

Ephedrine activates adrenergic receptors in two ways: by direct agonist activity and by release of norepinephrine via a carrier-mediated exchange mechanism. Ephedrine and ephedrine-type compounds such as pseudoephedrine, norephedrine (phenylpropanolamine), and pseudonorephedrine are most potent as substrates of the norepinephrine transporter. Their next most potent activity is as substrate activity at the dopamine transporter. They have weak affinity at α_2-adrenergic and 5-hydroxytryptamine7 [sic] (5-HT=serotonin) receptors (Ki values 1-10 μM) but no significant activity at α_1-adrenergic or β-adrenergic receptors. The pharmacological effects of ephedrine and ephedrine-like phenylpropanolamine analogs are probably mediated by release of norepinephrine (Rothman et al., 2003).

Ephedrine and other vasopressor agents, including m-octopamine (norfenefrine) showed a direct effect on arterial vessels during extracorporeal circulation in clinical trials, raising perfusion pressure. Norfenefrine induced a large, but short-lived increase in perfusion pressure (Boldt et al., 1986).

Ephedrine sulfate (CAS RN 134-72-5) was tested by the NTP in 14 day, 13 week, and 2 year studies in B6C3F1 mice and F344 rats with dosed feed. In the 13-week studies, mice were given ephedrine sulfate at concentrations of 310-5000 ppm in the feed, and rats were given 125-2000 ppm in the feed (NTP TR-307, 1986 abstr.). Changes in heart and adrenal weights were observed in rats (RTECS, 2002), but the major response was reduction in weight gain (NTP TR-307, 1986 abstr.).

There was no evidence of carcinogenicity in the two-year bioassay (NTP TR-307, 1986 abstr.), in which both species were fed a diet with 125 or 250 ppm ephedrine sulfate in their feed. For rats, the average doses were estimated to be equivalent to 4 mg/kg bw and 9 mg/kg bw for males.
and 5 mg/kg bw and 11 mg/kg bw for females. The average doses for mice were 14 mg/kg bw and 29 mg/kg bw for males and 12 mg/kg bw and 25 mg/kg bw for females. Throughout the study, rats and mice of both sexes showed lower mean body weight gains than controls.

Ephedrine sulfate was negative in a mouse lymphoma assay (NTP Testing Status Report) and SCE and chromosomal aberration assays in CHO cells. Ephedrine sulfate was not mutagenic in *Salmonella* strains TA100, TA1535, TA97, and TA98 with and without metabolic activation (NTP TR-307, 1986 abstr.). One 1996 study in RTECS (2002) reported DNA damage in rat hepatocytes at a concentration of 3 mmol/L.

l-Epinephrine (CAS RN 51-43-4) and l-Epinephrine Hydrochloride (CAS RN 55-31-2)
l-Epinephrine did not induce chromosomal aberrations in CHO cells with or without metabolic activation. In *Salmonella*, l-epinephrine was mutagenic in strain TA100 in the presence of metabolic activation, but results were equivocal without activation. The compound was not mutagenic in *Salmonella* strains TA98, TA1535, and TA1537 with or without metabolic activation (NTP TR-380, 1990 abstr.).

In 14-day inhalation tests, B6C3F1 mice and F344 rats were exposed to 12.5 to 200 mg/m³. Deaths occurred in male rats exposed in all dose groups and in female rats at concentrations of 25 mg/ m³ or higher. All groups showed increased respiratory rate. At 100 and 200 mg/m³, rats showed excessive lacrimation and dyspnea and mice showed exaggerated visual and auditory reflexes (NTP TR-380, 1990 abstr.).

In the 13-week inhalation tests, mice and rats were exposed to 2.5 to 40 mg/m³. At the highest dose, the animals showed increased respiratory rates, increased heart and adrenal gland weights, increased liver weight (only in mice), squamous metaplasia of the respiratory epithelium of the nasal mucosa, and uterine atrophy (only in 7/10 female mice). Rats showed degenerative lesions of the laryngeal muscle at 20 and 40 mg/m³, and mice showed glandular stomach inflammation at 10 to 40 mg/m³ (NTP TR-380, 1990 abstr.).

In 15-month studies with rats and mice, compound-related changes were not observed in the hematologic analyses. Absolute and relative decreases in liver and kidney weights were seen in one or both species at 3 and/or 5 mg/m³ but no compound-related lesions were observed (NTP TR-380, 1990 abstr.).

No carcinogenic effects were observed in the 2-year inhalation study (NTP TR-380, 1990 abstr.) in these strains; however, these studies were considered "inadequate studies of carcinogenic activity." Doses were "too low for the animals to have received an adequate systemic challenge." Mice were exposed to 1.5 or 3.0 mg/m³ and rats were exposed to 1.5 or 5.0 mg/m³. Mean body weights and survival of exposed and control animals were similar.

N-Methyltyramine (CAS RN 370-98-9)
Intraperitoneal injections of N-methyltyramine increased cAMP (cyclic adenosine monophosphate) concentration in mice and cGMP (3',5'-guanosine monophosphate) concentrations in mice and guinea pigs (tissues unspecified) *in vivo*. N-Methyltyramine had a
positive inotopic effect in vitro in guinea pig atrium, which was blocked by phentolamine, and in perfused guinea pig heart (Yen and Chung, 1981).

N-Methyltyramine was positively inotropic when given i.v. to dogs at 0.25 and 0.5 mg/kg while racemic p-synephrine was positively inotropic at 0.5 and 1.0 mg/kg (Chen et al., 1980).

Norfenefrine (m-Octopamine) (CAS RN 536-21-0)
Subcutaneous dosing of rats with norfenefrine for 90 days induced unspecified cardiac and gastrointestinal changes and some mortality. The TD_{50} was 810 mg/kg (probably a cumulative dose of 9 mg/kg/day since the rat s.c. LD_{50} from the same 1968 Japanese reference was 28.1 mg/kg) (RTECS, 1996c).

(R)-(−)-Phenylephrine (m-Synephrine) Hydrochloride (CAS RN 61-76-7)
In NTP testing, (R)-(−)-phenylephrine hydrochloride induced mutations in mouse lymphocytes (mouse lymphoma assay) and SCE in CHO cells at 1500 mg/L (RTECS, 1996d). The NTP testing status report also states that the compound was negative in chromosomal aberration and micronucleus tests in vitro, and in Salmonella.

In 14-day studies, no toxic effects were observed in F344 rats and B6C3F1 mice dosed with up to 2000 ppm phenylephrine hydrochloride in their feed.

In one subchronic study, F344 rats and B6C3F1 mice were given (R)-(−)-phenylephrine hydrochloride for 12 weeks at concentrations of 1250 to 20,000 ppm feed. Some male rats and mice at the 10,000- and 20,000-ppm dose levels died and one of the 10 male rats fed a diet with 5000 ppm died. Body weights decreased with increasing dietary concentrations. Feed consumption by rats was reduced. Inflammatory eye lesions were the only organ toxicity noted (NTP TR-322, 1987 abstr.).

No evidence of carcinogenicity was found in either strain in the 2-year bioassays (NTP TR-322, 1987 abstr.). Mice were given concentrations of 1250 and 2500 ppm in the feed (average doses of 133 and 270 mg/kg bw/day), and rats were given 620 and 1250 ppm in the feed (average doses of 24 and 50 mg/kg bw/day). Dosed mice and rats were 3 to 15% lighter than controls. Dosed male rats showed more frequent liver and prostate gland inflammation than did the controls.

In other studies, the (R)-(−)-phenylephrine hydrochloride induced DNA damage in rat hepatocytes at 7 mmol/L (~1500 mg/L). Rabbits dosed s.c. with (R)-(−)-phenylephrine hydrochloride on days 22-31 of gestation showed fetotoxicity; adverse effects on parturition were also noted (RTECS, 1996d).

Phenylpropanolamine (CAS RN 492-41-1)
Phenylpropanolamine, a structural analog of ephedrine and amphetamine, increases peripheral vascular resistance and blood pressure. It acts by stimulating adrenergic receptors directly and by stimulating norepinephrine release from neurons and is potentially toxic in treated hypertensive patients and in patients with cardiomyopathy (Bravo, 1988). At high doses, nasal decongestants may induce tachycardia. Deaths have been reported (Klaassen, 2001).
A clinical study indicated that phenylpropanolamine in appetite suppressants was an independent risk factor for hemorrhagic stroke in women (Kernan et al., 2000, cited by TRI, Inc., 2001). FDA issued a public health advisory in early 2001 that asked companies to stop marketing phenylpropanolamine-containing products.

11.0 **Online Databases and Secondary References**

11.1 **Online Databases**

National Library of Medicine Databases (TOXNET)
- ChemIDplus
- EMIC and EMICBACK
- HSDB
- TOXLINE

STN International Files
- AGRICOLA LIFESCI
- BIOSIS MEDLINE
- CABA Registry
- EMBASE RTECS
- HSDB TOXCENTER

TOXLINE includes the following subfiles:

<table>
<thead>
<tr>
<th>Toxicity Bibliography</th>
<th>TOXBIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Labor Office</td>
<td>CIS</td>
</tr>
<tr>
<td>Hazardous Materials Technical Center</td>
<td>HMTC</td>
</tr>
<tr>
<td>Environmental Mutagen Information Center File</td>
<td>EMIC</td>
</tr>
<tr>
<td>Environmental Teratology Information Center File (continued after 1989 by DART)</td>
<td>ETIC</td>
</tr>
<tr>
<td>Toxicology Document and Data Depository</td>
<td>NTIS</td>
</tr>
<tr>
<td>Toxicological Research Projects</td>
<td>CRISP</td>
</tr>
<tr>
<td>NIOSHTIC®</td>
<td>NIOSH</td>
</tr>
<tr>
<td>Pesticides Abstracts</td>
<td>PESTAB</td>
</tr>
<tr>
<td>Poisonous Plants Bibliography</td>
<td>PPBIB</td>
</tr>
<tr>
<td>Aneuploidy</td>
<td>ANEUPL</td>
</tr>
<tr>
<td>Epidemiology Information System</td>
<td>EPIDEM</td>
</tr>
<tr>
<td>Toxic Substances Control Act Test Submissions</td>
<td>TSCATS</td>
</tr>
<tr>
<td>Toxicological Aspects of Environmental Health</td>
<td>BIOSIS</td>
</tr>
<tr>
<td>International Pharmaceutical Abstracts</td>
<td>IPA</td>
</tr>
<tr>
<td>Federal Research in Progress</td>
<td>FEDRIP</td>
</tr>
<tr>
<td>Developmental and Reproductive Toxicology</td>
<td>DART</td>
</tr>
</tbody>
</table>

National Archives and Records Administration
Code of Federal Regulations (CFR)
In-House Databases
Current Contents on Diskette®
The Merck Index, 1996, on CD-ROM

11.2 Secondary References

12.0 References

FCC Products, Inc. Undated. Certificate of analysis: C. aurantium extract 10% synephrine. Available at Internet address:

FDA CFSAN (Food and Drug Administration, Center for Food Safety and Applied Nutrition). 1996. Poisonous Plant Database. Available at Internet address:

FDA CFSAN. 2003. EAFUS: A food additive database. Available at Internet address:

Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3]

Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3] 06/2004

Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-\textit{p}-Sympnephrine [94-07-5] and (±)-\textit{p}-Octopamine [104-14-3]

Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3]

Registry. 2003a. 140-14-3. Octopamine. Provided by the American Chemical Society on STN.

Registry. 2003b. 94-07-5. Synephrine. Provided by the American Chemical Society on STN.

RTECS (Registry of Toxic Effects of Chemical Substances). 1996a. Database record for 104-14-3. (±)-p-Octopamine. Profile provided by DOC on STN.

RTECS. 1996b. Database record for 94-07-5. (±)-p-Synephrine. Profile provided by DOC on STN.

RTECS. 1996c. Database record for racemic m-octopamine (norfenefrine). RTECS on STN International RTECS Number DN7250000.

RTECS. 1997. 5985-28-4. Syneprine hydrochloride. Profile provided by DOC on STN.

RTECS. 2003a. 614-35-7. (R)-(−)-p-Synephrine. Profile provided by DOC on STN.

RTECS. 2003b. 532-80-9. (S)-(+)p-Synephrine. Profile provided by DOC on STN.

Scollini, F., Sangiovanni, M., and Torchio, P. 1970. Comparative teratogenic effects of
HCAPLUS 1972:54426.

SlimStore.com. 2002. Ephedrine-free Dexatrim Natural. Available at Internet address:

Smartinfo. Undated. Citrus Aurantium. Available at Internet address:
http://www.sirius.nl/en/smartinfo?Plants=Citrus%20Aurantium. Last accessed on October 22,
2003.

like effects of p-synephrine in mouse models of immobility tests. Neurosci. Lett. 214(2-3):107-

Supplement Watch. Undated. Synephrine. Available at Internet address:
on October 22, 2003.

Suzuki, O., Katsumata, Y., and Oya, M. 1979a. Oxidation of phenylethanolamine and

Suzuki, O., Matsumoto, T., Oya, M., and Katsumata, Y. 1979b. Oxidation of synephrine by

fruit, immature Citrus fruit and decoctions of Chinese medicinal prescriptions containing these

serotonin in rat hypothalamus of D-fenfluramine, aminorex, phentermine and fluoxetine. Eur. J.

ID HEEP/80/04232).
Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3]

13.0 References Considered But Not Cited

Acknowledgements
Support to the National Toxicology Program for the preparation of Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3]—Review of Toxicological Literature was provided by Integrated Laboratory Systems, Inc., through NIEHS Contract Number N01-ES-35515. Contributors included: Raymond R. Tice, Ph.D. (Principal Investigator); Karen E. Haneke, M.S. (Project Coordinator); Marcus A. Jackson, B.A. (Project Coordinator); Bonnie L. Carson, M.S. (Senior Chemical Information Scientist); Claudine A. Gregorio, M.A.; Yvonne Straley, B.S.; Nathanael P. Kibler, B.A.; and Barbara A. Henning.
Appendix A: Units and Abbreviations

°C = degrees Celsius
 µg/L = microgram(s) per liter
 µg/m³ = microgram(s) per cubic meter
 µg/mL = microgram(s) per milliliter
 µM = micromolar
 CNS = central nervous system
 DAD = diode array detection
 FDA = Food and Drug Administration
 FID = flame ionization detection
 g = gram(s)
g/mL = gram(s) per milliliter
 GC = gas chromatography
 h = hour(s)
 HPLC = high performance liquid chromatography
 i.c. = intracerebral(ly)
i.p. = intraperitoneal(ly)
i.v. = intravenous(ly)
 kg = kilogram(s)
 L = liter(s)
lb = pound(s)
 LC = liquid chromatography
 LC₅₀ = lethal concentration in air for 50% of test animals (calculated)
 LD₅₀ = lethal dose for 50% of test animals (calculated)
 LD₉₀ = lethal dose low of any route, other than inhalation, over any given period of time, and
 reported to have caused death in humans or animals
 LOD = limit of detection
 mg/kg = milligram(s) per kilogram
 mg/m³ = milligram(s) per cubic meter
 mg/mL = milligram(s) per milliliter
 min = minute(s)
 mL/kg = milliliter(s) per kilogram
 mm = millimeter(s)
 mM = millimolar
 mmol = millimole(s)
 mmol/kg = millimoles per kilogram
 mo = month(s)
mol = mole(s)
mol. wt. = molecular weight
 MS = mass spectrometry
 NOEL = no observable effect level
 nm = nanometer(s)
n.p. = not provided
 ppb = parts per billion
 ppm = parts per million
 p.o. = peroral(ly), per os
Toxicological Summary for Bitter Orange (*Citrus aurantium* var. *amara*) Extracts and Constituents (±)-*p*-Synephrine [94-07-5] and (±)-*p*-Octopamine [104-14-3]

s.c. = subcutaneous(ly)
TD_{lo} = toxic dose low of any route, other than inhalation, over any period of time and reported to produce any toxic effect in humans or to produce carcinogenic, neoplastigenic, or teratogenic effects in animals or humans
TLC = thin layer chromatography
TSCA = Toxic Substances Control Act
TWA = time-weighted average
USEPA = U.S. Environmental Protection Agency
UV = ultraviolet
wk = week(s)
yr = year(s)
Appendix B: Chemicals Found in Citrus Aurantium (from the Phytochemical and Ethnobotanical Database)

Chemicals in Essential Oil
- AUROPTENOL* Essential Oil

Chemicals in the Flower (Orange Blossom)
- **EO** Flower 1,000 - 2,000 ppm
- ANTHRANILIC-ACID-METHYL-ETHER Flower 4 - 26 ppm
- LINALYL-ACETATE Flower 80 - 520 ppm
- ACETIC-ACID Flower
- BETA-OCIMENE Flower
- DECYL-ALDEHYDE Flower
- HESPERIDIN Flower
- INDOL Flower
- JASMONE Flower
- L-CAMPHENE Flower
- MYRCENE Flower
- PHENYLACETIC-ACID Flower
- PHENYLETHANOL Flower
- PHENYL-ETHYL-ALCOHOL Flower

Chemicals in the Fruit
- BETA-CAROTENE Fruit 1 - 27 ppm
- RIBOFLAVIN Fruit 1 - 3 ppm
- THIAMIN Fruit 1 - 6 ppm
- PHOSPHORUS Fruit 120 - 1,600 ppm
- ZINC Fruit 16 ppm
- CALCIUM Fruit 18 - 4,230 ppm
- NIACIN Fruit 3 - 24 ppm
- IRON Fruit 3 - 260 ppm
- COPPER Fruit 4 - 10 ppm
- ASCORBIC-ACID Fruit 420 - 3,947 ppm
- ASH Fruit 5,000 - 64,000 ppm
- SODIUM Fruit 54 - 116 ppm
- PROTEIN Fruit 6,000 - 56,000 ppm
- EO Fruit 7,000 - 25,000 ppm
- POTASSIUM Fruit 7,020 - 13,800 ppm
- HESPERIDIN Fruit 700 - 2,500 ppm
- MANGANESE Fruit 8 ppm
- FAT Fruit 8,000 ppm
- MAGNESIUM Fruit 800 - 1,730 ppm
- WATER Fruit 857,000 - 892,000 ppm
- CARBOHYDRATES Fruit 97,000 - 909,000 ppm
- 6,7-DIMETHOXYCOUMARIN Fruit
- AURANETIN* Fruit
- AURANTIAMARIN* Fruit
- BERGAPTE Fruit
- CITRANTIN* Fruit
- CITRIC-ACID Fruit
- COUMARIN Fruit
- DELTA-LIMONENE* Fruit
- GERANYL-ACETATE Fruit
- ISOHESPERIDIN* Fruit
- L-LINALYL-ACETATE Fruit
- NARINING Fruit
- NEOHESPERIDIN Fruit
- NERYL-ACETATE Fruit
- NOBILETIN* Fruit
- TANNIN Fruit
- LIMONIN Fruit JBH
- ZEAXANTHIN Fruit JBH

Chemicals in the Leaf
- TERPINOLENE Leaf 1 - 10 ppm
- CIS-OCIMENE Leaf 1 - 110 ppm
- ALPHA-PHELLANDRENE Leaf 1 - 20 ppm
- TRANS-OCIMENE Leaf 1 - 332 ppm
- SABINENE Leaf 1 - 40 ppm
- ALPHA-PINENE Leaf 1 ppm
- ALPHA-TERPINENE Leaf 1 ppm
- CIS-3-HEXENOL Leaf 1 ppm
- DECANAL Leaf 1 ppm
- GERANIAL Leaf 1 ppm
- NERAL Leaf 1 ppm
- THYMOL Leaf 1 ppm
- STACHYDRINE Leaf 1,000 ppm
- L-STACHYDRINE Leaf
- LINALOL Leaf 1,990 - 2,795 ppm
- NEROL Leaf 100 - 150 ppm
- p-CYMENE Leaf 100 - 270 ppm
- MYRCENE Leaf 130 - 550 ppm
- ALPHA-TERPINYL-ACETATE Leaf 20 - 229 ppm
- GERANIOL Leaf 200 - 350 ppm
- GERANYL-ACETATE Leaf 261 ppm
- ASCORBIC-ACID Leaf 3,000 ppm
- EO Leaf 3,000 ppm
- LINALYL-ACETATE Leaf 4,429 - 5,500 ppm
- ALPHA-TERPINOLEOL Leaf 460 - 760 ppm
- GAMMA-TERPINENE Leaf 50 - 110 ppm
- TERPINEN-4-OL Leaf 50 - 80 ppm
- NERYL-ACETATE Leaf 55 - 755 ppm
- LIMONENE Leaf 70 - 110 ppm
- BETA-PINENE Leaf 70 - 170 ppm
- ANTHRANILIC-ACID-METHYL-ETHER Leaf
- BETA-OCIMENE Leaf
- CADINENE Leaf
- CAMPHENE Leaf Plant
- CITRONELLIC-ACID Leaf
- DIPENTENE Leaf
- D-LINALOL Leaf
- DL-LINALOL Leaf
- DL-TERPINEOL Leaf
- D-NEROLIDOL Leaf
Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3]

FARNESOL Leaf Plant
FURFUROL Leaf
GERANIC-ACID Leaf
GERANYL-OXIDE Leaf
HESPERIDIN Leaf
L-LINALYL-ACETATE Leaf
PYRROL Leaf

Chemicals in the Pericarp
4-TERPINEOL Pericarp
DUODECYLALDEHYDE Pericarp
FORMIC-ACID Pericarp
GAMMA-TERPINENE Pericarp
NONANOL Pericarp
NONYL-ALDEHYDE Pericarp
OCTALDEHYDE** Pericarp
OCTANOL Pericarp
PELARGONALDEHYDE** Pericarp
PELARGONIC-ACID Pericarp
PENTANOL Pericarp
PELLANDRENE Pericarp
SABINENE Pericarp
SINENSETIN* Pericarp
TANGERETIN Pericarp
TERPENYL-ACETATE Pericarp
TERPINOLENE Pericarp
VIOLAXANTHIN Pericarp

Chemicals in the “Plant,” Not Otherwise Specified
LIMONENE Plant 1,000 - 8,000 ppm
FIBER Plant 3,000 - 160,000 ppm
(+)-AURAPTENAL Plant
4-TERPINEOL Plant
5-HYDROXYAURANETIN Plant
ACETALDEHYDE Plant
ACETIC-ACID Plant
ALPHA-HUMULENE Plant
ALPHA-IONONE Plant
ALPHA-PINENE Plant
ALPHA-TERPINOLENE Plant
ALPHA-YLANGENE Plant
AURANTIAMENE Plant
AURAPTEN Plant
BENZOIC-ACID Plant
BETA-COPAENE Plant
BETA-ELEMENE Plant
BETA-O CIMENE Plant
BETA-PINENE Plant
BUTANOL Plant
CADINENE Plant
CAPRINALDEHYDE Plant
CARVONE Plant
CARYOPHYLLENE Plant
CINNAMIC-ACID Plant
CITRAL Plant
CITRIC-ACID Plant

CITRONELLAL Plant
CITRONELLOL Plant
CRYPTOXANTHIN Plant
D-CITRONELLIC-ACID Plant
DECYL-ALDEHYDE Plant
DECYLPELARGONATE Plant
DELTA-3-CARENE Plant
DELTA-CADINENE Plant
DIPENTENE Plant
D-LIMONENE Plant
D-NEROLIDOL Plant
DODECANAL Plant
DODECEN-2-AL-(1) Plant
DUODECYLALDEHYDE** Plant
ETHANOL Plant
FORMALDEHYDE Plant
FORMIC-ACID Plant
FURFUROL Plant
GAMMA-ELEMENE Plant
GAMMA-TERPINENE Plant
GERANIOL Plant
GERANIAL Plant
GERANYL-OXIDE Plant
GUM Plant
HEXANOL Plant
INDOLE Plant
ISOLIMONIC-ACID Plant
ISOSCUTELLAREIN* Plant
ISOSINENSETIN* Plant
ISOTETRAMETHYLETHER Plant
LAURIC-ALDEHYDE Plant
LIMONIN Plant JBH
L-LINALOL Plant
MALIC-ACID Plant
MANNOSE Plant
METHANOL Plant
MYRCENE Plant
NARINGENIN Plant
NERAL Plant
NEROL Plant
NEROLIDOL Plant
NOBILETIN Plant
NOMILIN Plant
NOMILIN Plant
NONANOL Plant
NONYL-ALDEHYDE Plant
NOOTKATONE Plant
OCTANOL Plant
OCTYL-ACETATE Plant
PALMITIC-ACID Plant
p-CYMENE Plant
p-CYMOL Plant
PECTIN Plant
PELARGONIC-ACID Plant
PENTANOL Plant
PELLANDRENE Plant
PHENOL Plant
<table>
<thead>
<tr>
<th>Chemicals in the Root and Seed</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESELIN Root JBH</td>
</tr>
<tr>
<td>Fatty Seed 448,600 ppm</td>
</tr>
</tbody>
</table>

Source: ARS GRIN Phytochemical and Ethnobotanical Database. Specific sources:

Symbols

* *C. aurantium* is the species with the highest concentration of this chemical.

** *C. aurantium* is the only species with this chemical in the pericarp.

† *C. aurantium* is one of only two or three plants containing this chemical.
Appendix C: Summary of Physiological Responses to Adrenoceptor Stimulation
(Sources: Dutta, 2003; MeSH Database; Lohse et al., 2003; Labrid et al., 1989; Ruffolo, 1984; Molinoff, 1984; Schumann, 1983)

α: Phenylethylamines and imidazolines (e.g., clonidine) are the major chemical classes of α-receptor agonists. Postsynaptic α₁ and α₂ receptors are present in the vasculature and mediate vasoconstriction, apparently by different mechanisms. Agonists of α-adrenoceptors in the heart produce positive inotropic effects (increase the force of muscular contractions).

α₁: Constricts arterioles; contracts pregnant uterus; high affinity for phenylephrine. Clinically important in heart, blood vessels, liver, intestines, genitourinary, smooth muscle, CNS, and peripheral nervous system. Receptors are located postsynaptically and mediate the excitatory effects of catecholamines at α receptors, and mediate the response of the effector organ. May mediate phosphoinositide breakdown in some systems (phosphotyidylinositol diphosphate-inositol triphosphate system).

α₂: Found in vascular smooth muscle, pre- (usually) and postsynaptically in CNS and peripheral nervous system, and in pancreatic β cells. Involved in regulation of norepinephrine release. These receptors modulate neurotransmitter liberation via a negative feedback mechanism and may act through adenylate cyclase inhibition. High affinity for clonidine.

β: Catecholamine effects are most frequently mediated by adenylate cyclase activation and cAMP accumulation. Ligands for β-adrenoceptors (agonists and antagonists) are generally aryl- or heteroaryl substituted ethanolamines or oxypropanolamines. Phenylethanolamine agonists must have a secondary amine in the side chain. Catecholamine structural analogs may include replacement of the hydroxyl (OH) group by a hydroxymethylene (-CH₂OH) or a carbamo (-NHCONH₂) group. β-adrenoceptor agonists induce positive inotropic (increased force of contraction), chronotropic (increased rate of contraction), dromotropic (increased nerve conductivity), and bathmotropic (increased response to stimuli, increased excitability of muscle tissue) effects (Schumann, 1983).

β₁: Agonists induce inotropic and chronotropic actions in the heart and stimulate renin secretion in kidney. They are present in the heart, juxtaglomerular cells of the kidney, CNS, peripheral nervous system. These receptors are equally sensitive to norepinephrine and epinephrine; isoproterenol is more potent. Agonist selectivity is "strongly and negatively correlated with lipophilicity" (Labrid et al., 1989). This is the most prominent β-adrenergic receptor subtype in cardiomyocytes. They are the receptors chiefly responsible for the positive chronotropic and inotropic effects of catecholamines.

β₂: Found in vascular, bronchial, gastrointestinal, and genitourinary smooth muscle, and skeletal muscle. Involved in smooth muscle relaxation and metabolic effects of catecholamines. Dilates arterioles; dilates bronchioles; relaxes uterus. They bind terbutaline with high affinity. Isoproterenol and epinephrine are more active at these receptors than norepinephrine. β₂-adrenergic receptor agonists also increase cardiac function. They activate nonclassical signaling pathways, which suggests a function distinct from the β₁ subtype (Lohse et al., 2003).
β3: Increases fat lipolysis. β3 receptors are the predominant receptor type expressed in white and brown adipocytes. They are involved in modulation of energy metabolism and thermogenesis. Isoproterenol and norepinephrine have comparable activities (both higher than that of epinephrine).

α,β: Increases glycogenolysis and gluconeogenesis in the liver; increases fat lipolysis (see β3); decreases intestinal motility

Indirect-acting sympathomimetics induce norepinephrine release. Neuronal cells take them up actively followed by norepinephrine replacement in storage vesicles (Dutta, 2003).
Appendix D: Definitions from the MeSH Database

Proteins and Receptors

Membrane Proteins
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Year introduced: 1977

GTP-Binding Proteins [retrieved in MESH database by the phrase “g proteins”]
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-.
Year introduced: 1997

Receptors, Cell Surface
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
Year introduced: 1994

Receptors, G-Protein-Coupled
The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTrIMERIC G-PROTEINS.
Year introduced: 2004

Receptors, Neurotransmitter
Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses.
Year introduced: 1994

Receptors, Biogenic Amine
Cell surface proteins that bind biogenic amines with high affinity and regulate intracellular signals which influence the behavior of cells. Biogenic amine is a chemically imprecise term which, by convention, includes the catecholamines epinephrine,
norepinephrine, and dopamine, the indoleamine serotonin, the imidazolamine histamine, and compounds closely related to each of these.

Year introduced: 1994

Receptors, Catecholamine

Cell surface proteins that bind catecholamines with high affinity and trigger intracellular changes which influence the behavior of cells. The catecholamine messengers epinephrine, norepinephrine, and dopamine are synthesized from tyrosine by a common biosynthetic pathway.

Year introduced: 1994

Receptors, Dopamine

Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells.

Year introduced: 1977

Receptors, Adrenergic, alpha

One of the two major pharmacological subdivisions of adrenergic receptors. The alpha-beta distinction was originally based on cellular effects of receptor activation but now relies on the relative affinities for certain synthetic ligands. alpha-Adrenergic receptors are further subdivided into several subclasses based on studies of endogenous and cloned receptors.

Year introduced: 1984. [“The effects of catecholamines at alpha-receptors generally involve other second messenger systems (Molinoff, 1984).”]

Receptors, Adrenergic, alpha-1

A subclass of alpha-adrenergic receptors (RECEPTORS, ADRENERGIC, ALPHA). alpha-1 Adrenergic receptors can be pharmacologically discriminated, e.g., by their high affinity for the agonist phenylephrine and the antagonist prazosin. They are widespread, with clinically important concentrations in the liver, the heart, vascular, intestinal, and genitourinary smooth muscle, and the central and peripheral nervous systems.

Year introduced: 1994. [α1-receptors are located postsynaptically and mediate the excitatory effects of catecholamines at alpha receptors. α1-adrenoceptor stimulation may mediate breakdown of phosphoinositide in some systems (Molinoff, 1984).]

Receptors, Adrenergic, alpha-2

A subclass of alpha-adrenergic receptors (RECEPTORS, ADRENERGIC, ALPHA). alpha-2 Adrenergic receptors can be pharmacologically discriminated, e.g., by their high affinity for the agonist clonidine and the antagonist yohimbine. They are found on pancreatic beta cells, platelets, and vascular smooth muscle, as well as both pre- and postsynaptically in the central and peripheral nervous systems.

Year introduced: 1994. [These autoreceptors are involved in the regulation of
norepinephrine release and may act through adenylate cyclase inhibition (Molinoff, 1984.).]

Receptors, Adrenergic, beta

One of the two major pharmacologically defined classes of adrenergic receptors. The alpha-beta distinction was originally based on the cellular effects of receptor activation but now relies on the relative affinities for characteristic synthetic ligands. Beta adrenergic receptors are further subdivided based on information from endogenous and cloned receptors.

Year introduced: 1984 [Catecholamine effects at β-receptors are most frequently mediated by adenyl cyclase activation and cAMP accumulation (Molinoff, 1984).

Receptors, Adrenergic, beta-1

A subclass of beta-adrenergic receptors (RECEPTORS, ADRENERGIC, BETA). beta-1 Adrenergic receptors are equally sensitive to epinephrine and norepinephrine and bind the agonist dobutamine and the antagonist metoprolol with high affinity. They are found in the heart, juxtaglomerular cells, and in the central and peripheral nervous systems.

Year introduced: 1994

Receptors, Adrenergic, beta-2

A subclass of beta-adrenergic receptors (RECEPTORS, ADRENERGIC, BETA). beta-2 Adrenergic receptors are more sensitive to epinephrine than to norepinephrine and have a high affinity for the agonist terbutaline. They are widespread, with clinically important roles in skeletal muscle, liver, and vascular, bronchial, gastrointestinal, and genitourinary smooth muscle.

Year introduced: 1994. [β2-receptors are involved in smooth muscle relaxation, including vascular relaxation, and catecholamine metabolic effects (Molinoff, 1984).]

Receptors, Adrenergic, beta-3

A subclass of beta-adrenergic receptors (RECEPTORS, ADRENERGIC, BETA). beta-3 Adrenergic receptors are the predominant beta-adrenergic receptor type expressed in white and brown ADIPOCYTES and are involved in modulating ENERGY METABOLISM and THERMOGENESIS.

Year introduced: 2001

Receptor Agonists and Antagonists

By class

Adrenergic Agents

Drugs that act on adrenergic receptors or affect the life cycle of adrenergic transmitters. Included here are adrenergic agonists and antagonists and agents that affect the synthesis, storage, uptake, metabolism, or release of adrenergic transmitters.

Year introduced: 1995
Adrenergic Agonists
 Drugs that bind to and activate adrenergic receptors.
 Year introduced: 1995

Adrenergic alpha-Agonists
 Drugs that selectively bind to and activate alpha adrenergic receptors.
 Year introduced: 1995

Adrenergic Antagonists
 Drugs that bind to but do not activate ADRENERGIC RECEPTORS. Adrenergic antagonists block the actions of the endogenous adrenergic transmitters EPINEPHRINE and NOREPINEPHRINE.
 Year introduced: 1995

Adrenergic alpha-Antagonists
 Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma.
 Year introduced: 1995

Adrenergic beta-Antagonists
 Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrythmias, angina pectoris, glaucoma, migraine headaches, and anxiety.
 Year introduced: 1995

Catecholamines
 A general class of ortho-dihydroxyphenylalkylamines derived from tyrosine

Neurotransmitter Agents
 Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function.
 Year introduced: 1998

Some Receptor Agonists
Dopamine
 One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from tyrosine and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a
major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action.

Ephedrine
An alpha- and beta-adrenergic agonist that may also enhance release of norepinephrine. It has been used in the treatment of several disorders including asthma, heart failure, rhinitis, and urinary incontinence, and for its CNS stimulatory effects in the treatment of narcolepsy and depression. It has become less extensively used with the advent of more selective agonists.

Epinephrine
The active sympathomimetic hormone from the adrenal medulla in most species. It stimulates both the alpha- and beta-adrenergic systems, causes systemic vasoconstriction and gastrointestinal relaxation, stimulates the heart, and dilates bronchi and cerebral vessels. It is used in asthma and cardiac failure and to delay absorption of local anesthetics.

Norepinephrine
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.

Octopamine
An alpha-adrenergic sympathomimetic amine, biosynthesized from tyramine in the CNS and platelets and also in invertebrate nervous systems. It is used to treat hypotension and as a cardiotonic. The natural D(-) form is more potent than the L(+) form in producing cardiovascular adrenergic responses. It is also a neurotransmitter in some invertebrates. Year introduced: 1991

Phenylephrine
An alpha-adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent.

Synephrine
Sympathetic alpha-adrenergic agonist with actions like PHENYLEPHRINE. It is used as a vasoconstrictor in circulatory failure, asthma, nasal congestion, and glaucoma. Year introduced: 1980

Tyramine
An indirect sympathomimetic. Tyramine does not directly activate adrenergic receptors, but it can serve as a substrate for adrenergic uptake systems and monoamine oxidase so it
prolongs the actions of adrenergic transmitters. It also provokes transmitter release from adrenergic terminals. Tyramine may be a neurotransmitter in some invertebrate nervous systems.

Related Terms

Second Messenger Systems

Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system.

Year introduced: 1989

Adenylate Cyclase

An enzyme of the lyase class that catalyzes the formation of CYCLIC AMP and pyrophosphate from ATP. EC 4.6.1.1. Year introduced: 1998

Cyclic AMP

An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.

Year introduced: 1994
Toxicological Summary for Bitter Orange (*Citrus aurantium* var. amara) Extracts and Constituents (±)-p-Synephrine [94-07-5] and (±)-p-Octopamine [104-14-3]

Appendix E: Description of Search Strategy and Results

Bitter Orange (*Citrus aurantium* var. amara) (ILS Code X0020) and Constituents (±)-p-Synephrine (CAS RN 94-07-5; ILS CODE X0021) and (±)-p-Octopamine (CAS RN 104-14-3; ILS Code X0022)

Nomination
Bitter orange peel and its constituent synephrine are being widely used in dietary supplements with and without ephedra (ma huang) for weight loss. Syneprine and other bitter orange biogenic amine constituents—octopamine, N-methyltyramine, tyramine, and hordenine—have adrenergic activity and may induce cardiovascular problems similar to those induced by ephedrine.

Search Strategy
About 3 days were spent scanning the Internet. Besides the Google search engine general searches (often with specification that retrievals should be limited to the pdf format), the searcher visited specific U.S. government agency web sites and checked botanic web sites used in previous assignments on dietary supplements. Dates searched and URLs for retrieved pdf and certain other types of files may be found in Attachment A. Fee-based searches started by identifying CAS RNs and molecular structures for compounds of interest, particularly forms of synephrine and octopamine (racemic mixtures, stereo isomers (enantiomers), and m-, o-, and p-isomers and their salts and esters) with the major focus on the para forms. (Little information was collected about the ortho forms.) The numbers of records on synephrines and octopamines in the biomedical databases were large. The original focus was to limit retrievals to their association with bitter orange peel and to restrict the interest to the para isomers of synephrine and octopamine. Later strategies tried to limit retrievals to toxicity. Thus, terms in PubMed were combined with "tox [sb]," and toxicity-specific databases such as RTECS, DART, EMIC, and TOXLINE were searched for synephrines and octopamines. No systematic searches were done for the other bitter orange amine constituents (the tyramines and hordenine). The following table summarizes the numbers of search results by database.

<table>
<thead>
<tr>
<th>Databases</th>
<th>Approximate No. of Titles Examined</th>
<th>No. Selected for Printing</th>
<th>No. in Search Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A-B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B- and C</td>
</tr>
<tr>
<td>STN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRICOLA</td>
<td>23</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>BIOSIS</td>
<td>65</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>CABA</td>
<td>150</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>EMBASE</td>
<td>78</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>MEDLINE</td>
<td>51</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>NAPRALERT</td>
<td>24</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>TOXCENTER</td>
<td>13</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>404</td>
<td>98</td>
<td>63</td>
</tr>
<tr>
<td>PubMed</td>
<td>(Not tracked)</td>
<td>(Not tracked)</td>
<td>>122</td>
</tr>
<tr>
<td>TOXLINE</td>
<td>59</td>
<td>59</td>
<td>23</td>
</tr>
<tr>
<td>CCoD</td>
<td>51</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Internet</td>
<td>(no strategy explained)</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Others were entirely irrelevant or duplicates.

64
Toxicological Summary for Bitter Orange (Citrus aurantium var. amara) Extracts 06/2004 and Constituents (+)-p-Synephrine [94-07-5] and (+)-p-Octopamine [104-14-3]

Specific keywords and search strategies used for STN International databases, Current Contents® on Diskette (CCoD), Google, PubMed, and TOXLINE are shown in Attachment B. Further details include the relative numbers of titles/citations examined for each strategy and the numbers that appear in the search package from the standard databases. These are further aggregated by report-value codes.

In brief, the STN International search strategy combined the following concepts in a simultaneous search of the databases in the above matrix: (A) a limited number of terms and CAS RNs for p-octopamine and (B) for p-synephrine, (C) several terms for bitter oranges and herbal preparations from C. aurantium, (D) "peel? OR pericarp? OR rind," and (E) reviews published between 2000 and 2003. The combination of concepts "C AND D" [bitter orange peel] retrieved 275 records (answer set L30) that included the 7 results retrieved with the combination C AND D AND (A OR B) (L45) [bitter orange peel AND (synephrine OR octopamine)]. The combination "(C AND (A OR B)) NOT (L30 OR L45)" [bitter orange AND (synephrine OR octopamine) minus the records already seen] retrieved 38 hits (L52). The combination "(A OR B) AND E" [recent reviews on synephrine OR octopamine] retrieved 30 records. Because so many records were about invertebrates, the synephrine (B) OR octopamine (A) terms were combined with the names of several common mammalian laboratory species. Of the 73 hits, only 11 were selected to print.

Search Results

The database records, web pages, and pages from other references in this package are grouped by ILS subject code number. Most of the material within groups is organized alphabetically by first author surname. The hard copy contains green divider pages between the subjects. The order of topics in the following summary corresponds to the order in which they will appear in the ILS toxicology review.

Authoritative Reviews (Subject Code 05)

The only authoritative review found was the brief Commission E Monograph on Bitter Orange Peel (American Botanical Council, 1998 [excerpt]).

Other Reviews (11)

Brief reviews were found in newspapers and at web sites selling bitter orange peel formulations as weight-loss products. Referenced general reviews found included American Botanical Council (undated) [on bitter orange peel]; Cheng and Tsai (1991), David and Coulson (1985), and Williams et al. (1987) [on octopamines]; Preuss et al. (2002) [C. aurantium as an ephedra replacement]; and Pietrzak et al. (2002) (German) [biogenic amines in animal nutrition]. The following reviews covered trace amines as neurotransmitters (many focus on invertebrates): Branchek and Blackburn (2000), Coyle (1977), Nguyen and Juoria (1989), Robertson (1981), Saavedra and Axelrod (1976), and Walker et al. (1996). Breda and Zattoni (1976) and Fogel et al. (1990) reviewed the hepatic renal syndrome and Farmer and Mulakken (1990) reviewed hepatic encephalopathy. Fulenwider et al. (1978) covered deranged tyrosine metabolism in cirrhosis. D’Andrea et al. (2003b) reviewed the possible role of biogenic amines in headache. Others reviewed the physiological actions of structural analogs and other bitter orange constituents (e.g., Camp, 1970, on N-methyltyramine).
Chemical Identification (13a)

\[
\begin{align*}
\text{(±)-p-Octopamine} & \\
\text{(±)-p-Synephrine}
\end{align*}
\]

(±)-p-Synephrine
Bitter orange, Seville orange, and sour orange are common names for *Citrus aurantium* var. [or subspecies] amara, described by Quintero et al. (2003) as a native of southeast Asia. Extracts, tinctures, and oils of peel, leaves, and flowers as well as dried immature fruit that are used as medicines and for perfumes and flavorings have various synonyms and Latin designations (see the keywords used in the STN International searches in Attachment B). Many preparations have appeared in older English-language pharmacopoeias and formularies (e.g., Felter and Lloyd, 1898, and the British Pharmaceutical Codex, 1911, entry for *Aurantii Cortex*). Much literature is on Chinese and Japanese preparations such as Zhi shi and multicomponent preparations.
p-Synephrine and p-octopamine are the most frequently mentioned biogenic amines found in bitter orange peel, other *C. aurantium* preparations, and other *Citrus* species such as *C. reticulata* Blanco (mandarin orange) (Chen et al., 2002). Most of the literature is indexed with the CAS RNs of the racemic mixtures; however, the enantiomers have also been reported. Tyramine, N-methyltyramine, and, less often, hordenine are often determined. The widely occurring stachydrine—unlike the other amines in bitter orange, which are 4-hydroxyphenylethanolamine derivatives—is a 2-carbonyl-1,1-dimethylpyrroolidinium inner salt (Budavari, 1996). Several sources list other constituents of *C. aurantium*, including flavonone glycosides and flavone aglycones (e.g., ARS USDA, 1999); coumarins, psoralens, polymethoxyflavones, and waxes (Chouchi et al., 1996); and aldehydes and terpenes (e.g., Boelens and Jimenez, 1989). Many studies have reported the determination of bitter orange peel constituents, often noting differences in oil composition from unripe and ripe fruit (e.g., Boelens and Jimenez, 1989). The cold-pressed oil from the easily detachable cortex contains mainly monoterpenes (chiefly limonene [77.9%], alcohols, and one ketone, nootkatone) (Quintero et al., 2003). The limonene concentration reported by Salib et al. (1978) was lower (24%) and was matched by that of citronellal. The psoralens found in *Citrus* species include bergapten and epoxybergamottin (Dugo et al., 1996). Njorge et al. (2003) also reported the presence of epoxy compounds in *C. aurantium* var. Cyathifera, but they attributed them to artificial formation during storage. Records from the Registry file, *The Merck Index* (Budavari, 1996), and ChemIDplus have been organized into subgroups: (13a-1) bitter orange preparations; free base, enantiomers, and derivatives of (13a-2) p-synephrine, (13a-3) p-octopamine, (13a-4) m-synephrine (phenylephrine), and (13a-5) m-octopamine (norfenefrine); and (13a-6) some related compounds involved in metabolism of monoamines (dopamine, tyramine, epinephrine, norepinephrine, etc.).
Chemical-Physical Properties (13b)
Properties of the *C. aurantium* amines and some structural analogs may be found in the Registry records and *The Merck Index* monographs (Budavari, 1996) in the 13a subgroups of compounds. Properties of some of the *C. aurantium* preparations may also be found in the studies described in 13a.

Analytical Methods (13c)
Analytical methods information in this package may also be found among references in Groups 12 and 13a. Takei et al. (1999) determined the synephrine content in citrus fruit peels, immature fruit, and Chinese medical decoctions by capillary electrophoresis. DeBoer et al. (1999) used capillary electrophoresis with a chiral selector to separate synephrine enantiomers. FDA scientists developed LC/MS (liquid chromatography/mass spectrometry) and LC/tandem MS methods for ephedrine and synephrine determination in dietary supplements (Niemann and Gay, 2003). Other methods used include thin layer chromatography (TLC) (e.g., Pachaly, 1999) and high-performance liquid chromatography (HPLC) with various detectors. For example, He et al., (1997) used HPLC with electrospray MS detection.

Commercial Availability (01)

Producers (01a)
C. aurantium var. amara is chiefly cultivated in southern Spain and Sicily. They are grown as a crop in Arizona where the peak of production is in January (Luckett, 2003; Tantillo, undated). Boehringer-Ingelheim may be a producer of racemic synephrine. The oil from *C. aurantium* flowers is imported from the West Indies and sold in amounts from 0.5 to 32 oz. (±)-Synephrine is sold in 25-kg fiber drums.

Suppliers (01b)
Alexander Essentials (undated) of the UK offers bitter orange essential oil in amounts up to 1 L. Suppliers of multicomponent dietary supplements for weight loss and other purposes include Cytodyne Technologies (Xenadrine® EFX with Bitter Orange [said to be standardized for synephrine, N-methyltyramine, hordenine, octopamine, and tyramine]); Herbs MD (Ultra Diet Phen Calm Mood with 24 mg synephrine per 570 mg bitter orange peel extract); SlimStore.com (DexaTrim Natural with bitter orange peel powdered extract, 12 mg/caplet (1 serving); Integra Nutrition, Inc. (Lipotrim); and Nature’s Way (bitter orange [dried fruit] extract standardized to 6% synephrine). Niemann and Gay (2003) of FDA CFSAN determined (-)-ephedrine and synephrine concentrations of 25 samples of finished dietary supplement products and compared results to content declaration for 48 finished products. Suppliers may be identified in this publication.

Production Processes (01d)
Production process may include syntheses of octopamine (Somanathan and Guerrero, 1985) and manufacture of various pharmaceutical preparations (e.g., Martin and Cook, 1961; Robbins, 1883; and National Formulary, 1926).
Production and Import Volumes (01c)
Specific data were not found so far. The American Society for Clinical Nutrition, Inc. (Moore, 2000) estimated that 17.2 million Americans used weight-loss supplements in the period 1996-1998. Further searches may find the volumes of oil imported.

Other Processes (01e)
Halmekoski and Pekkala (1977) used synephrine tartrate, octopamine, and tyramine as chemical intermediates in the preparation of either butyramides or butanoic acid esters.

Uses (01f)
Luckett (2003) described culinary uses other than orange marmalade, a major use of bitter orange peel. Lin et al. (1986) (Chinese) stated that bitter orange peel oil is used in drinks, confectionery, and cakes. [The NAPRALERT record for this publication stated that the peel oil contained 96.41% limonene.]

Lists of uses of bitter orange preparations for medicines and dietary supplements may be found in many groups in this package. Raintree Nutrition Inc. (2002) listed Ethnobotanical uses for orange bitters in China, Curacao, Haiti, India, Mexico, Trinidad, and Turkey. A series of U.S. patents assigned to Zhishin, LLC, South Burlington, VT (Jones, 2001, 2002a,b) covered compositions for "regulation of appetite, body weight and athletic function with compositions from C. aurantium and C. reticulata." Kuhrts (2002) patented methods and "thermogenic" compositions for producing weight loss that contained bitter orange, synephrine, ephedrine, or other norepinephrine (noradrenaline)-stimulating compound(s).

Environmental Releases, Occurrence, and Fate (04)
Little relevant information was found on these topics. Synephrine and octopamine occur in the tissues of vertebrates and invertebrates. Wheaton and Stewart (1970) reported on the distribution of tyramine, N-methyltyramine, hordenine, octopamine, and synephrine in nearly 200 species of higher plants, including Citrus species. All citrus species analyzed contained 15 to 58 ppm N-methyltyramine. Katty et al. (1977) and Veeraswamy et al. (1976) (same research group) reported that a highly specific enzyme from the soil bacterium Arthrobacter synephrinum degraded racemic synephrine to p-hydroxyphenylacetaldehyde and methylamine.

Exposure Potential (02)
Synephrine is present in citrus fruits, juice, and peel of the bitter orange and some other orange species. Bitter orange juice may be added in limited amounts to sweet orange juice (see FDA, 2003). Bitter orange peel may be added to beer and other beverages such as Curacao liqueur (http://www.curacaoliqueur.com/). The Florida Department of Citrus regularly monitors the concentrations of synephrine and its precursor tyrosine among several other compounds. The capillary electrophoretic method can simultaneously analyze most orange juice components (Cancalon, 1999). The UK Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT, undated) mentioned vasoactive amines in food, including octopamine, synephrine, tyramine, β-phenylethylamine, serotonin, and histamine. Octopamine, synephrine, tyramine, dopamine, epinephrine, and norepinephrine were indexed in the database record for a publication by Lovenberg (1973) on vaso- and psychoactive substances in food. Food spoilage organisms in dry sausage might generate synephrine (Maijola, 1994) before the
sausage is deemed unfit for consumption due to masking of unpleasant odors by the sausage spices [ILS conjecture]. Smartinfo (undated) and Therapeutic Research Faculty (2003) discuss usual doses of bitter orange peel, peel extract, and synephrine from dietary supplements. Endogenous octopamine concentrations in the brain may be perturbed by injury or perturbations of other brain chemicals by diseases such as cirrhosis (e.g., Bendahan et al., 1993).

Regulations (24)

Bitter orange peel is Generally Regarded as Safe (GRAS) as a direct additive to food (21 CFR 182.20 and 21 CFR 582.20). Limits for bitter orange juice in frozen concentrated orange juice were promulgated in 21 CFR 146.146. Ground orange peel (no specific species) may be added to table sirup (FDA, 2003). FDA lists *C. aurantium* in its Poisonous Plants database. The USDA (1974) issued standards for grades of orange marmalade containing bitter orange peel, and FDA offered guidance for preparation of orange marmalade (FDA CFSAN, 1997). FDA concerns about bitter orange and other compounds in dietary supplements led to collection of product labels (FDA CFSAN, 2000). The FDA/CFSAN EAFUS (2003) list of substances directly added to food includes *C. aurantium* orange oil extract, peel, flowers, and leaf but no entries for the terms Curacao, bitter, Seville, or sour oranges. The International Fragrance Association (IFRA, 2002) recommended in the 36th Amendment to the IFRA Code of Practice concentration limits for expressed peel oil from *C. aurantium* due to the potential for photoirritation. The National Collegiate Athletic Association (NCAA, undated) included synephrine from *C. aurantium*, Zhi shi, or bitter orange on its list of substances banned for student athletes.

Human Studies (18)

Supplements that include bitter orange were found to be effective in weight loss in obese adults (Colker et al., 1999; Armstrong et al., 2001; Duhme et al., 2001; Johnson et al., 2001). A report of a woman taking Xenadrine, an herbal weight loss formulation containing bitter orange (5 mg synephrine), described a case of ischemic colitis potentially induced by the formulation (Ryan et al., 2002). The oil of bitter orange is an effective topical antifungal agent, producing no side effects except for mild irritation (Ramadan et al., 1996). The effects of bitter orange, synephrine tartrate, or mixtures containing bitter orange on the cardiovascular system have also been investigated (Glatzel, 1968; Hofstetter et al., 1985; Penzak et al., 2000, 2001; Kalman et al., 2002; Seifert et al., 2003). Four Chinese papers describe the anti-shock effects of *Fructus aurantii* (Anonymous, 1981; Yen et al., 1983; Huang et al., 1984; Zhao et al., 1989).

Seville orange juice was found to be an inhibitor of CYP3A/P-glycoprotein (DiMarco et al., 2002; Penzak et al., 2002; Lemahieu et al., 2003).

The Australian National Drugs and Poisons Schedule Committee (2003) noted in their recent meeting that there were inadequate data available to fully understand the pharmacological profile of synephrine. Estimated human exposure to synephrine as a flavoring agent was 0.16-1.6 µg/kg/day.

Additionally, synephrine has been used to treat retrograde ejaculation; it was effective in 1 of 6 cases and was thought to be attributable to an increase of bladder neck tone with prevention of backflow of semen into the bladder (Stockamp et al., 1974).
ADME (12)
Many of the studies in this group do not discuss metabolic pathways but rather indicate the presence of the 4-hydroxyphenylethanolamines of interest in human and other mammalian tissues and body fluids. For example, D’Andrea et al. (2003a) reported that plasma concentrations of octopamine, synephrine, and tyramine "vary among individuals." Andrew et al. (1993) found both para and meta isomers in the plasma of human hypertensives and controls (see also Watson et al., 1990). Arai et al. (1997) followed the time course of urinary excretion of synephrine and its metabolites 4-hydroxymandelic acid and conjugated synephrine enantiomers after ingestion of *C. unshui*. Crowley et al. (1981) reported that hypertensive patients excreted ortho, meta, and para isomers of hydroxymandelic acid. Patients that excreted high concentrations of the meta isomer used medications containing phenylephrine. Other analogs found in human plasma were metanephrine and normetanephrine (Andrew et al., 1993). Boulton and Wu (1972) reviewed the *in vivo* formation of the para forms of tyramine, octopamine, and synephrine in the brain. Octopamine synthesis may be increased in hepatic encephalopathy, a frequent complication of cirrhosis, due to "cerebral excess of aromatic amino acids" (Felaco et al., 1997) (Italian). Hengstrom and Aulepp (1978) (German) studied the pharmacokinetics and metabolism of tritiated synephrine in 10 patients. Apparently, oral doses were 100% absorbed. Pharmacokinetic parameters were comparable to those of other "sympathomimetics with similar structure." Kimura et al. (2000) studied the bioavailability of oral N-methyltyramine. Octopamine and synephrine oxidation by monoamine oxidases (MAO) types A and B was studied by Suzuki et al. (1979a,b).

Acute Toxicity (03)
LD_{10} and LD_{50} data are reported in RTECS (2003) for synephrine, synephrine HCl, synephrine tartrate, stereo isomers of synephrine, and octopamine for mouse, rat, rabbit, and/or guinea pig. Adverse effects and contraindications reported for *C. aurantium* in weight loss supplements include sensitivity to light and increased blood pressure (Heinrich, 2002). Synephrine induced cardiac hypertrophy and functional changes in rats (Zimmer, 1997), and aqueous extracts of *F. aurantii* (unripe fruit of *C. aurantium*), as well as synephrine, reduced portal pressure in rats (Huang et al., 1995). LC_{50} values for *C. aurantium* L. in a brine shrimp were reported to correlated well with *in vivo* mouse LD_{50}s (Logarto et al., 2001). Essential oil from peels of *C. aurantium* L. increased the latency period of induced-tonic seizures, barbiturate-induced sleeping time, and anxiolytic activity in mice. Hydroethanolic extracts from leaves also enhanced barbiturate-induced sleeping time but had no effect on tonic seizures (Carvalho-Freitas and Costa, 2002). Synephrine caused inotropic but not chronotropic effects in guinea pigs (Anonymous, 1978).

Short-Term and Subchronic Toxicity (06a)
Two herbal drug mixtures, TJ-41 and TJ-43, each containing ~ 10% *Aurantii nobilis pericarpium*, were reported to be toxic at doses > 2500 mg/kg bw and > 2000 mg/kg bw, respectively (Iijma et al., 1995; Kanitani et al., 1995). Synephrine was reported to have beneficial pressor effects on portal hypertensive rats in an eight-day treatment study (Huang et al., 2001).
Chronic Toxicity (06b)
No data were available.

Synergistic/Antagonistic Effects (22)
The role of octopamine as a neuromodulator or neurotransmitter has been studied in invertebrates, rats, and insects (Adamo, 2002; Druse, 1981; Duffield et al., 1986; Mesce, 2002; Waldeck, 1970). Orange juice components have been found to inhibit P-glycoprotein in human leukemia cells (Ikegawa et al., 2000). Additionally, the ability of fruit juices to inhibit organic anion transporting polypeptide-mediated drug uptake and other drug interactions have been reported (Dresser et al., 2002; Li et al., 2002; Malhotra et al., 2001; Maskalyk, 2002; Mohri and Uesawa, 2001; UNC Press Release, 2001; Zychlinski and Montgomery, 1984).

One paper reviewed the ability of C. aurantium to attenuate acute intoxication of cyclosporine (Hou et al., 2000). Another study investigated the radioprotective properties of aryl alkyl amine adrenomimetics in mice (Kalinski and Iashunskii, 1979).

Reproductive and Developmental Toxicity (10)
Octopamine affected uterine contractility in pregnant women (Senties et al., 1970) and in rat vas deferens (Grana et al., 1980). Synephrine had a stimulatory effect on aromatization of testosterone in Sertoli cell-enriched rat cell cultures (Verhoeven et al., 1979). Birth defects and teratogenic effects of synephrine have also been studied (Schardein et al, 1993; Scrollini et al., 1970). Both octopamine and synephrine enhanced progesterone production in bovine luteal cells in vitro (Battista and Condon, 1986).

Carcinogenicity (07a)
No data were available.

Genotoxicity (09)
Only two genotoxicity studies were identified. One reported results for octopamine in tests for genetic crossing-over and nondisjunction in Aspergillus nidulans (Bignami et al., 1974), and the other reported that synephrine was not mutagenic in the mouse lymphoma L5178Y cell assay (McGregor et al., 1988).

Immunotoxicity (08)
The Atlas on Mechanisms in Adverse Reactions to Food (Andrea et al., 1995) appears to have immunotoxicity data for octopamine. Information on allergic reactions to oranges is addressed in a draft report by the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment. Some aromatherapy oils that contain extracts from the subspecies C. aurantium bergemia have been shown to be phototoxic due to the presence of 5-methoxypsoralen (Kaddu et al., 2001). The cell viability of splenocytes and thymocytes was suppressed in BALB/c mice by oral administration of extracts of A. nobilis pericarpium (Yum et al., 2003). Aqueous extracts of A. Fructus immaturus were reported to inhibit Type I allergic reactions in rats (Koda et al., 1983).
Other Biological Activities (14)

Synephrine, octopamine, *A. nobilis pericarpium*, and/or extracts of *C. aurantium* have also been studied for effects on cellular function, neurological activity, enzyme activity, the cardiovascular system, and the blood and hematopoietic system.

Effects on Cell Growth (17)

Octopamine was assessed for inhibitory effects on human keratinocyte mitosis in vitro (Harper & Flaxman, 1975). Compounds isolated from extracts of *C. aurantium* L. inhibited cell growth in mouse leukemia L1210 and human erythroleukemia K562 cells in vitro (Satoh et al., 1996) while methoxylated flavones isolated from extracts of *A. nobilis* pericarpium induced cell differentiation in mouse myeloid leukemia and human promyelocytic leukemia cells (Sugiyama et al., 1993).

Neurological Effects (19)

Neurological effects reported for synephrine and octopamine included increased locomotor activity, pre- and postsynaptic effects, anti-depressive activity, agonistic response toward trace amine receptors, inhibition of smooth muscle contraction, and depression of neurological function (Bulach et al., 1984; Bunzow et al., 2001; Celuch and Juorio, 1988; Chance et al., 1985; Cho et al., 1996; Coulon et al., 1989; Jagiello-Wojtowicz, 1979; Jagiello-Wojtowicz and Chodkowska, 1984; Kim et al., 2001; Lafi and Leake, 1988; Song et al., 1996).

Effects on Enzymes (28)

6’,7’-Dihydroxybergamottin, found in grapefruit juice and to a lesser extent in some orange juices, inhibited the metabolism of substrates for enzymes of the CYP3A subfamily (Edwards et al., 1996, 1999; Bailey, 2000; Guo et al., 2000, 2001; Wangensten et al., 2003). Octopamine, but not synephrine, inhibited cytochrome P450 c11 in vitro (Louw et al., 2000).

In a study of the inhibitory effects of citrus fruit extracts from 42 species and cultivars on rat platelet cyclooxygenase and lipoxygenase, *C. aurantium* had the highest lipoxygenase inhibitory activity (Nogata et al., 1996). Additionally, the inhibitory effects of fruit extracts (including Seville orange juice) on P glycoprotein-related efflux carriers in vitro have been reported (Deferme et al., 2002).

The multiple roles of monoamine oxidase inhibitors (including octopamine) in the therapy of neurodegenerative disorders, based on their ability to alter catecholamine catabolism in the central nervous system, have been investigated (Foley et al., 2000). In rat jejunal mucosa, octopamine inhibited histamine-N-methyltransferase. It was suggested that the compound might play a vital role in the chemical potentiation of histamine toxicity (Taylor and Leiber, 1979).

Cardiovascular Effects (29)

Synephrine, octopamine, and extracts of *C. aurantium* have been evaluated for effects on the cardiovascular system which includes changes in blood pressure, cardiovascular toxicity, contractility and excitability of the heart muscle, and/or adrenergic activity. Humans, dogs, cats, guinea pigs, and/or rats were used in these studies (Carpené et al., 1999; Fontana et al., 2000; Fregly et al., 1979; Ress et al., 1980; Yen and Chung, 1981). Extracts of *C. aurantium* caused cardiovascular toxicity in rats (Calapai et al., 1999). Pressor effects and the ability to restore
contractility and excitability to heart muscle was reported for synephrine and octopamine (Altura, 1975; Chen et al., 1990; Jia et al., 1983; Keogh and Baron, 1985; Ledda et al., 1980).

Effects on Blood and Hematopoietic System (30)

Human platelet aggregation was studied in individuals taking herbal prescriptions that included *A. nobilis pericarpium* (Okuyama et al., 1987). Polymethoxy-flavonoids extracted from *C. aurantium* L. were evaluated for their effect on erythrocyte sedimentation rate (Quarenghi et al., 1985).

Miscellaneous

The activation of lipolysis by octopamine and extracts of *C. aurantium* was assessed in mammalian white fat cells as an indicator of adrenergic activity (Carpéné et al., 1999; Fontana et al., 2000; Sakuramata and Kusano, 1998).

Structure-Activity Relationships (25)

Monographs for structural analogs ephedrine and amphetamine and related compounds, which contain aminopropyl rather than aminoethyl side chains, are included in the subgroups following the Group 25 collection of studies. Among the studies, Jordan et al. (1987) found that *in vitro* adrenergic activities of the meta and para isomers of octopamine and synephrine on β1- and β2-adrenoreceptors in guinea pig atria and trachea were 100 (phenylephrine) to 40,000-fold less active than norepinephrine. *Casarett and Doull’s Toxicology* (Klaassen, 2001) listed the cardiotoxic manifestations and proposed mechanisms of cardiotoxicity for phenylephrine, ephedrine, amphetamines, and other structural analogs on pages 614-615 with a discussion on page 618.